
Journal of the Association for Computing Machinery, 44(3):427-485, 1997.

How to Use Expert Advice

Nicol�o Cesa-Bianchi

�

Yoav Freund

y

David Haussler

z

David P. Helmbold

x

Robert E. Schapire

{

Manfred K. Warmuth

k

Abstract

We analyze algorithms that predict a binary value by combining the predictions of several

prediction strategies, called experts. Our analysis is for worst-case situations, i.e., we make

no assumptions about the way the sequence of bits to be predicted is generated. We measure

the performance of the algorithm by the di�erence between the expected number of mistakes it

makes on the bit sequence and the expected number of mistakes made by the best expert on this

sequence, where the expectation is taken with respect to the randomization in the predictions.

We show that the minimumachievable di�erence is on the order of the square root of the number

of mistakes of the best expert, and we give e�cient algorithms that achieve this. Our upper and

lower bounds have matching leading constants in most cases. We then show how this leads to

certain kinds of pattern recognition/learning algorithms with performance bounds that improve

on the best results currently known in this context. We also compare our analysis to the case

in which log loss is used instead of the expected number of mistakes.

1 Introduction

A central problem in statistics and machine learning is the problem of predicting future events

based on past observations. In computer science literature in particular, special attention has been

given to the case in which the events are simple binary outcomes (e.g. [HLW94]). For example,

in predicting today's weather, we may choose to consider only the possible outcomes 0 and 1,

where 1 indicates that it rains today, and 0 indicates that it does not. In this paper we show that

some simple prediction algorithms are optimal for this task in a sense that is closely related to

the de�nitions of universal forecasting, prediction, and data compression which have been explored

in the information theory literature. We then give applications of these results to the theory of

pattern recognition [Vap82] and PAC learning [Val84].

We take the extreme position, as advocated by Dawid and Vovk in the theory of prequential

probability [Daw84, Dawar, Daw91, Vov93], Rissanen in his theory of stochastic complexity [Ris78,

RL81, Ris86, Yam95] and Cover, Lempel and Ziv, Feder and others in the theory of universal

prediction and data compression of individual sequences [FMG92, MF93, Cov65, CS77, Han57,

�

Universit�a di Milano (Italy), cesabian@dsi.unimi.it. This research was done while this author was visiting UC

Santa Cruz, partially supported by the \Progetto �nalizzato sistemi informatici e calcolo parallelo" of CNR under

grant 91.00884.69.115.09672.

y

AT&T Laboratories, yoav@research.att.com

z

UC Santa Cruz, haussler@cse.ucsc.edu.

x

UC Santa Cruz, dph@cse.ucsc.edu

{

AT&T Laboratories, schapire@research.att.com

k

UC Santa Cruz, manfred@cse.ucsc.edu. Haussler, Warmuth and Freund were supported by ONR grant N00014-

91-J-1162 and NSF grant IRI-9123692.

1



Vov92, Chu94], that no assumptions whatsoever can be made about the actual sequence y =

y

1

; : : : ; y

`

of outcomes that is observed; the analysis is done in the worst case over all possible

binary outcome sequences. Of course no method of prediction can do better than random guessing

in the worst case, so a naive worst-case analysis is fruitless. To illustrate an alternative approach

in the vein of universal prediction, consider the following scenario.

Let us suppose that on each morning t you must predict whether or not it will rain that day

(i.e., the value of y

t

), but before making your prediction you are allowed to hear the predictions of

a (�xed) �nite set E = fE

1

; : : : ; E

N

g of experts. On the morning of day t, each expert has access to

the weather outcomes y

1

; : : : ; y

t�1

of the previous t � 1 days, and possibly to the values of other

weather measurements x

1

; : : : ; x

t�1

made on those days, as well as today's measurements x

t

. The

measurements x

1

; : : : ; x

`

will be called instances. Based on this data, each expert returns a real

number p between 0 and 1 that can be interpreted as his/her estimate of the probability that it

will rain that day. After hearing the predictions of the experts, you also choose a number p 2 [0; 1]

as your estimate of the probability of rain. Later in the day, nature sets the value of y

t

to either

1 or 0 by either raining or not raining. In the evening, you and the experts are scored. A person

receives the loss jp� yj for making prediction p 2 [0; 1] when the actual outcome is y 2 f0; 1g. To

see why this is a reasonable measure of loss,

1

imagine that instead of returning p 2 [0; 1] you tossed

a biased coin and predicted outcome 1 with probability p and outcome 0 with probability 1 � p.

Then jp� yj is the probability that your prediction is incorrect when the actual outcome is y.

Let us �x the instance sequence x

1

; : : : ; x

`

, since it plays only a minor role here, and vary only

the outcome sequence y = y

1

; : : : ; y

`

. Imagine that the above prediction game is played for ` days,

during which time you accumulate a total loss L(y) =

P

`

t=1

jŷ

t

� y

t

j, where ŷ

t

2 [0; 1] is your

prediction at time t. Each of the experts also accumulates a total loss based on his/her predictions.

Your goal is to try to predict as well as the best expert, no matter what outcome sequence y is

produced by nature.

2

Speci�cally, if we let L

E

(y) denote the minimum total loss of any expert on

the particular sequence y, then your goal is to minimize the maximum of the di�erence L(y)�L

E

(y)

over all possible binary sequences y of length `. Since most outcome sequences will look totally

random to you, you still won't be able to do better than random guessing on most sequences.

However, since most sequences will also look totally random to all the experts (as long as there

aren't too many experts), you may still hope to do almost as well as the best expert in most cases.

The di�cult sequences are the ones that have some structure that is exploited by one of the experts.

To do well on these sequences you must quickly zero in on the fact that one of the experts is doing

well, and match his/her performance, perhaps by mimicking his/her predictions.

Through a game-theoretic analysis, we �nd that for any �nite set of experts, there is a strategy

that minimizes the maximum of the di�erence L(y) � L

E

(y) over all possible binary outcome

sequences y. While this min/max strategy can be implemented in some cases, it is not practical in

general. However, we de�ne an algorithm, called P for \Predict", that is simple and e�cient, and

performs essentially as well as the min/max strategy. Actually P is a family of algorithms that is

related to the algorithm studied by Vovk [Vov90] and the Bayesian, Gibbs and \weighted majority"

methods studied by a number of authors [LW94, LLW95, HKS94, STS90, SST92, HB92, HW95], as

well as the method developed by Feder, Merhav and Gutman [FMG92]. We show that P performs

quite well in the sense de�ned above so that, for example, given any �nite set E of weather forecasting

experts, P is guaranteed not to perform much worse than the best expert in E , no matter what the

1

An alternate logarithmic loss function, often considered in the literature, is discussed brie
y in Section 8.

2

This approach is also related to that taken in recent work on the competitive ratio of on-line algorithms, and in

particular to work on combining on-line algorithms to obtain the best competitive ratio [FKL

+

91, FFK

+

91, FRR94],

except that we look at the di�erence in performance rather than the ratio.

2



actual weather turns out to be. The algorithm P is completely generic in that it makes no use of

the side information provided by the instances x

1

; : : : ; x

`

. Thus, it would also do almost as well as

the Wall Street expert with the best inside information when predicting whether the stock market

will rise or fall.

In particular, letting L

P

(y) denote the total loss of algorithm P on the sequence y and L

E

(y)

the loss of the best expert on y as above, we show (Theorem 16) that for all binary

3

outcome

sequences y of length ` , L

P

(y) � L

E

(y) �

q

` ln(jEj+1)

2

+

log

2

(jEj+1)

2

, and that no algorithm can

improve the multiplicative constant of the square-root term for jEj; `!1, where jEj is the number

of experts.

Previous work has shown how to construct an algorithm A such that the ratio L

A

(y)=L

E

(y)

approaches 1 in the limit [Vov90, LW94, FMG92]. In fact, Vovk [Vov90] described an algorithm

with the same bound as the one we give in Theorem 10 for the algorithm P. This theorem leaves a

parameter to be tuned. Vovk gives an implicit form of the optimum choice of the parameter. We

arrive at an explicit form that allows us to prove nearly optimal bounds on L

A

(y)�L

E

(y). To our

knowledge, our results give the �rst precise bounds on this di�erence.

It turns out that these bounds also give a tight lower bound on the expectation of the minimal

L

1

distance between a random binary string uniformly chosen from f0; 1g

`

and a set of N points

in [0; 1]

`

. This answer to a basic combinatorial question may be of independent interest.

The remainder of this paper is organized as follows. In Section 3, we characterize exactly the

performance of the best possible prediction strategy using a min/max analysis. Section 4 describes

the algorithm P and shows that it achieves the optimal bound given above. In Section 4.4 we show

that if the loss L

E

(y) of the best expert is given to the algorithm a priori, then P can be tuned so

that L

P

(y)�L

E

(y) �

p

L

E

(y) ln jEj+

log

2

jEj

2

. In Section 4.6 we show that even when no knowledge

of L

E

(y) is available, one can use a doubling trick to obtain a bound on L

P

(y) � L

E

(y) that is

only a small constant factor larger than the above bound. This algorithm can nearly match the

performance of the best expert on all pre�xes of an in�nite sequence y.

Finally, in Section 5 we show how the results we have obtained can be applied in another machine

learning context. We describe a pattern recognition problem in which examples (x

1

; y

1

); : : : ; (x

t�1

; y

t�1

)

are drawn independently at random from some arbitrary distribution on the set of all possible la-

beled instances and the goal is to �nd a function that will predict the binary label y

t

of the next

random example (x

t

; y

t

) correctly. Performance is measured relative to the best binary-valued func-

tion in a given class of functions, called the comparison class. This kind of relative performance

measure is called regret in statistics. General solutions to this regret formulation of the pattern

recognition problem have been developed by Vapnik [Vap82], Birge and Massart [BM93], and oth-

ers. This problem can also be described as a special variant of the probably approximately correct

(PAC) learning model [Val84] in which nothing is assumed about the \target concept" that gener-

ates the examples other than independence between examples (sometimes referred to as agnostic

learning [KSS94]), and in which the learning algorithm is not required to return a hypothesis in

any speci�c form. Using the prediction strategy P, we develop an algorithm that solves this pat-

tern recognition problem and derive distribution-independent bounds for the performance of this

algorithm. These bounds improve by constant factors some of the (more general) bounds obtained

by Vapnik [Vap82] and Talagrand [Tal94] on the performance of an empirical loss minimization

algorithm.

The results presented in this paper contribute to an ongoing program in information theory and

3

The algorithm has recently been extended to the case when the outcomes are in the interval [0; 1] with the

performance bounds as in the binary case [HKW95].

3



statistics to minimize the number of assumptions placed on the actual mechanism generating the

observations through the development of robust procedures and strengthened worst-case analysis.

In investigating this area, we have been struck by the fact that many of the standard-style statistical

results that we have found most useful, such as the bounds given by Vapnik, have worst-case

counterparts which are much stronger than we had expected would be possible. We believe that if

these results can be extended to more general loss functions and learning/prediction scenarios, with

corresponding optimal estimation of constants and rates, this worst-case viewpoint may ultimately

provide a fruitful alternative foundation for the statistical theory of learning and prediction.

2 An overview of the prediction problem

In this section, we de�ne the problem of predicting binary sequences and give an overview of our

results on this problem.

We refer to the binary sequence to be predicted as the outcome sequence, and we denote it by

y = y

1

; : : : ; y

t

; : : : ; y

`

, where t is the index of a typical time step or trial, y

t

2 f0; 1g, and ` is the

length of the sequence. We denote by y

t

the pre�x of length t of y, i.e., y

t

= y

1

; : : : ; y

t

.

We denote the set of experts by E = fE

1

; : : : ; E

N

g, where N is the number of experts. The

prediction of expert E

i

at time t is denoted by �

i;t

2 [0; 1] and the prediction of the algorithm at

time t is denoted by ŷ

t

2 [0; 1].

A prediction algorithm is an algorithm that at time t = 1; : : : ; `, receives as input a vector

of expert predictions h�

1;t

; : : : ; �

N;t

i, as well as the predictions made by the experts in the past

(i.e., h�

1;1

; : : : ; �

N;1

i; : : : ; h�

1;t�1

; : : : ; �

N;t�1

i), the sequence of past outcomes (i.e., y

t�1

), and the

predictions made by the algorithm in the past (i.e., ŷ

1

: : : ŷ

t�1

). The prediction algorithm maps

these inputs into its current prediction ŷ

t

.

The loss of prediction algorithm A on a sequence of trials with respect to a sequence of outcomes

y (and set of experts) is de�ned to be the sum

P

`

t=1

jŷ

t

�y

t

j which is denoted L

A

(y). Note that the

set of experts will always be understood from context so we can suppress the dependence of L

A

(y)

on E . Similarly, the loss of expert E

i

with respect to y is de�ned to be

P

`

t=1

j�

i;t

�y

t

j and is denoted

L

E

i

(y). Finally, the loss of the best expert is denoted by L

E

(y); thus, L

E

(y) = min

i=1;:::;N

L

E

i

(y).

Our goal is to �nd algorithms whose loss L

A

(y) is not much larger than L

E

(y). Moreover,

our ultimate goal is to prove bounds that hold uniformly for all outcome sequences and expert

predictions, and that assume little or no prior knowledge on the part of the prediction algorithm.

This problem can be viewed as a game in which the predictor plays against an adversary who

generates both the experts' predictions and the outcomes. We assume that both players can observe

all of the actions made by the other player up to the current point of time, as well as its own past

actions. The game consists of ` time steps, and both sides know ` before the game begins. We now

describe the binary sequence prediction game. At each time step, t = 1 : : :`, the game proceeds as

follows:

� The adversary chooses the experts' predictions, �

i;t

2 [0; 1], for 1 � i � N .

� The predictor generates its prediction ŷ

t

2 [0; 1].

� The adversary chooses the outcome y

t

2 f0; 1g.

The goal of the predictor in this game is to minimize its net loss: L

A

(y)� L

E

(y). The goal of the

adversary is to maximize this value.

4

The min/max value for this game, is the worst case net loss

of the optimal prediction strategy. We will denote this min/max value by V

N;`

.

4

Formally, an expert in this context is a function of the form E

i

: ([0; 1]�f0; 1g)

�

! [0; 1]. The interpretation here

4



In the following section we give the optimal min/max strategy for the predictor and for the

adversary in this game. This analysis gives a simple recursive equation for V

N;`

. Unfortunately, we

don't have a closed form expression that solves this equation. However, using results obtained in

Sections 3 and 4, we can show that

V

N;`

= (1 + o(1))

s

` lnN

2

;

where o(1) ! 0 as N; `!1.

In Section 3.1 we analyze the optimal prediction algorithm for a case in which the adversary is

somewhat restricted. Using this restriction of the game we �nd an explicit closed form expression

that lower bounds V

N;`

. The adversary is restricted in that the predictions of the experts are

functions only of the trial number. In other words, each expert is a �xed sequence of ` numbers

in [0; 1]. We call these static experts. We also assume that these sequences are known to the

predictor in advance. We derive the exact min/max solution for this restricted game for any choice

of the sequences. We obtain our explicit lower bound by analyzing the case in which the N expert

sequences are chosen using independent coin 
ips.

In Section 4 we present a family of prediction algorithms for the general prediction game.

The basic algorithm, which we call P has a real-valued parameter, �, which controls its behavior.

This parameter plays a similar role to the \learning rate" parameter used in gradient based learning

algorithms [Hay94]. Di�erent choices of � guarantee di�erent performance bounds for the algorithm.

The optimal choice of � is of critical importance and occupies much of the discussion in Sections 4.4{

4.6 and also later in Section 5.4.

We analyze three variants of the algorithm, each of which chooses � in a di�erent way, according

to the type of knowledge available to the predictor. The �rst variant chooses � when the predictor

knows only an upper bound on the loss of the best expert. The second variant chooses � in a

situation where the predictor knows only the length ` of the game. The third variant handles the

case where the predictor knows nothing at all in advance. Using the analysis of the second case,

we get an upper bound for V

N;`

that asymptotically matches the lower bound from Section 3.1.

3 An optimal prediction strategy

We now give the optimal prediction algorithm for the binary sequence prediction problem. This

algorithm is based on the optimal min/max solution of the binary sequence prediction game de-

scribed in the previous section, guaranteeing that it has the best possible worst-case performance.

However, the algorithm is computationally expensive.

The following function plays a major role in the construction and analysis of the optimal pre-

diction strategy. Let R

+

denote the nonnegative reals, and N denote the nonnegative integers. We

de�ne the function v : (R

+

)

N

� N! R

+

inductively as follows:

v(M; 0) = min

1�i�N

(M

i

) (1)

v(M; r) = min

Z2[0;1]

N

v(M + Z; r� 1) + v(M + 1� Z; r� 1)

2

(2)

is that E

i

maps a �nite sequence ((ŷ

1

; y

1

); : : : ; (ŷ

t�1

; y

t�1

)) of prediction/outcome pairs to a new expert prediction

�

i;t

. (Note that each E

i

function can compute the value of the other E

j

functions, and thus the experts' predictions

can depend on the predictions made by experts in the past, as well as the current time t.)

5



where the 1 in the expression M +1�Z denotes the vector of N 1's, and M

i

is the ith component

of vector M . Clearly, this function is well de�ned and can, in principle, be calculated for any given

M and r. We will discuss the complexity of this computation after the proof of Theorem 2.

The parameters of the function v are interpreted as follows. The integer r denotes the number

of remaining trials, i.e., the number of sequence bits that remain to be predicted. The past loss

incurred by the expert E

i

when there are r remaining trials will be denoted M

r

i

, and M

r

will denote

the vector hM

r

1

; : : : ;M

r

N

i. It is the quantity v(M

r

; r) that will be important in our analysis. In

some sense, v(M

r

; r) is measuring the anticipated loss of the best expert on the entire sequence of

trials.

In order to show that our prediction strategy generates predictions that are in the range [0; 1] we

will need the following lemma, which shows that the function v(M; r) obeys a Lipschitz condition.

Lemma 1 For any r 2 N and any X; Y 2 (R

+

)

N

jv(X; r)� v(Y; r)j � jjX � Y jj

1

;

where jjX � Y jj

1

= max

i

jX

i

� Y

i

j.

Proof: The proof is by induction on r:

If r = 0, let i

0

be an index that minimizes fX

i

g and j

0

be an index that minimizes fY

i

g. Then

v(X; 0)� v(Y; 0) = X

i

0

� Y

j

0

� X

j

0

� Y

j

0

� jjX � Y jj

1

:

Now suppose r > 0 and let us assume that the lemma holds for r � 1. Let Z

0

2 [0; 1]

N

be a

vector that minimizes

v(Y; r) = min

Z2[0;1]

N

v(Y + Z; r� 1) + v(Y + 1� Z; r� 1)

2

:

We get:

v(X; r)� v(Y; r)

= min

Z2[0;1]

N

v(X + Z; r� 1) + v(X + 1� Z; r� 1)

2

� min

Z2[0;1]

N

v(Y + Z; r� 1) + v(Y + 1� Z; r� 1)

2

�

v(X + Z

0

; r� 1) + v(X + 1� Z

0

; r� 1)

2

�

v(Y + Z

0

; r� 1) + v(Y + 1� Z

0

; r� 1)

2

=

v(X + Z

0

; r� 1)� v(Y + Z

0

; r� 1)

2

+

v(X + 1 � Z

0

; r� 1)� v(Y + 1� Z

0

; r� 1)

2

�

jj(X + Z

0

)� (Y + Z

0

)jj

1

2

+

jj(X + 1� Z

0

)� (Y + 1 � Z

0

)jj

1

2

= jjX � Y jj

1

where the last inequality follows from our inductive hypothesis.

We now de�ne the prediction strategy MM and then prove a theorem showing that this is the

optimal prediction strategy. The prediction strategy (see Figure 1) works as follows: On trial t, let

r = ` � t + 1 be the number of bits that remain to be predicted, M

r

be the vector representing

the loss of each of the experts on the sequence seen so far, and Z

r

be the vector of current expert

predictions, i.e., Z

r

= h�

1;t

; : : : ; �

N;t

i. The prediction strategy sets its prediction to be

ŷ

t

=

v(M

r

+ Z

r

; r� 1)� v(M

r

+ 1� Z

r

; r� 1) + 1

2

: (3)

6



Algorithm MM

1. Initialize:

� t := 1 f current trial number g

� r := ` f number of remaining trials g

� M

`

:= 0 f current cumulative loss vector g

2. While t � `, repeat:

� Receive the predictions of the N experts, Z

r

= h�

1;t

; : : : ; �

N;t

i.

� Compute and output prediction

ŷ

t

=

v(M

r

+ Z

r

; r� 1)� v(M

r

+ 1 � Z

r

; r� 1) + 1

2

where v is de�ned by equations (1) and (2).

� Receive the correct outcome y

t

.

� M

r�1

i

:= M

r

i

+ jy

t

� �

i;t

j for i = 1; : : : ; N .

� t := t + 1

� r := r � 1

Figure 1: Description of algorithm MM.

As jj(M

r

+Z

r

)� (M

r

+1�Z

r

)jj

1

� 1, we get from Lemma 1 that 0 � ŷ

t

� 1; thus this prediction

formula always generates legitimate predictions.

The following theorem, the main result of this section, characterizes the loss of this strategy

exactly in terms of the function v, and shows moreover that this strategy is the best possible.

Theorem 2 Let MM be the prediction strategy described above and in Figure 1. Then for any set

of experts E and for any outcome sequence y, the loss of MM is bounded by

L

MM

(y)� L

E

(y) �

`

2

� v(0; `) ;

where ` is the number of prediction trials, N is the number of experts, and 0 is a vector of N zeros.

Moreover, MM is optimal in the sense that for every prediction strategy A there exists a set of

experts E and an outcome sequence y for which

L

A

(y)� L

E

(y) �

`

2

� v(0; `) :

Hence V

N;`

=

`

2

� v(0; `).

7



Proof: The �rst part of the theorem is proved using induction on the number r of remaining trials.

As above, let M

r

be an N dimensional vector that describes the losses of each of the N experts on

the �rst ` � r trials (so r trials remain) and let �

r

denote the loss incurred by MM on these �rst

` � r trials. Then our inductive hypothesis is a bound on the net loss of MM at the end of the

game, namely,

L

MM

(y)� L

E

(y) � �

r

+

r

2

� v(M

r

; r) : (4)

It is clear that if we choose r = ` we get the statement of the theorem, since M

`

= 0. We now

present the inductive proof of the claim.

For r = 0, the claim follows directly from the de�nitions since v(M

0

; 0) is equal to the loss of

the best expert at the end of the game, r=2 = 0, and �

0

is the loss of MM.

For r > 0, let Z

r

= h�

1;t

; : : : ; �

N;t

i denote the predictions given by the experts at trial t = `�r+1

(i.e., when there are r future outcomes to predict). Using the inductive assumption for r � 1 and

Equation (3) we can calculate the loss of MM at the end of the game; for the two possible values

of the next outcome y

t

we get that the net loss is bounded by the same quantity which agrees with

the claim for r remaining trials.

If y

t

= 0 then the loss of MM up to the next step is �

r�1

= �

r

+ ŷ, and the loss of the experts

is M

r�1

= M

r

+ Z

r

. Using the inductive assumption we get that the net loss at the end of the

game will be at most

�

r�1

+

r � 1

2

� v(M

r�1

; r� 1)

= �

r

+

v(M

r

+ Z

r

; r� 1)� v(M

r

+ 1� Z

r

; r� 1) + 1

2

+

r � 1

2

� v(M

r

+ Z

r

; r� 1)

= �

r

+

r

2

�

v(M

r

+ Z

r

; r� 1) + v(M

r

+ 1� Z

r

; r� 1)

2

:

Similarly, if y

t

= 1, then the loss of MM at the next step is �

r�1

= �

r

+ 1� ŷ, and the loss of the

experts is M

r�1

= M

r

+ 1 � Z

r

, and we get that the net loss at the end of the game will be at

most

�

r�1

+

r � 1

2

� v(M

r�1

; r� 1)

= �

r

+ 1�

v(M

r

+ Z

r

; r� 1)� v(M

r

+ 1� Z

r

; r� 1) + 1

2

+

r � 1

2

� v(M

r

+ 1 � Z

r

; r� 1)

= �

r

+

r

2

�

v(M

r

+ Z

r

; r� 1) + v(M

r

+ 1� Z

r

; r� 1)

2

:

Thus, for either value of y

t

2 f0; 1g, we have that

L

MM

(y)� L

E

(y) �

�

�

r

+

r

2

�

v(M

r

+ Z

r

; r � 1) + v(M

r

+ 1� Z

r

; r� 1)

2

�

� max

Z2[0;1]

N

�

�

r

+

r

2

�

v(M

r

+ Z; r� 1) + v(M

r

+ 1� Z; r� 1)

2

�

= �

r

+

r

2

� min

Z2[0;1]

N

v(M

r

+ Z; r� 1) + v(M

r

+ 1� Z; r� 1)

2

= �

r

+

r

2

� v(M

r

; r): (5)

This completes the induction, and the proof of the �rst part of the theorem.

8



The proof of the lower bound proceeds similarly. Let A be any prediction strategy, let r be

the number of trials remaining, let M

r

be the vector describing the loss of each expert up to

the current trial when r trials remain, and let �

r

be the loss incurred by A up to this current

trial. The natural adversarial choice for the experts' predictions on the current trial t is any vector

Z

r

= h�

1;t

; : : : ; �

N;t

i which minimizes the right hand side of Equation (2) (the de�nition of v(M

r

; r)).

If ŷ

t

is A's prediction then the adversary chooses the outcome y

t

that maximizes A's loss on the

trial, jŷ

t

� y

t

j.

We prove by induction on r that this adversary forces the net loss of any algorithm to be at

least

L

A

(y)� L

E

(y) � �

r

+

r

2

� v(M

r

; r) :

As above, equality holds when r = 0.

For the inductive step, let t be the trial number when r trials remain. Recall that �

r�1

is either

�

r

+ ŷ

t

or �

r

+ 1� ŷ

t

and that M

r�1

is either M

r

+Z

r

or M

r

+ 1� Z

r

depending on the value of

y

t

. Thus, by the inductive hypothesis and the de�nition of the adversary

L

A

(y)� L

E

(y)

� max

�

�

r

+ ŷ

t

+

r � 1

2

� v(M

r

+ Z

r

; r � 1); �

r

+ 1� ŷ

t

+

r� 1

2

� v(M

r

+ 1� Z

r

; r� 1)

�

�

1

2

�

�

r

+ ŷ

t

+

r � 1

2

� v(M

r

+ Z

r

; r� 1) + �

r

+ 1� ŷ

t

+

r � 1

2

� v(M

r

+ 1� Z

r

; r� 1)

�

= �

r

+

r

2

�

v(M

r

+ Z

r

; r� 1) + v(M

r

+ 1� Z

r

; r� 1)

2

= �

r

+

r

2

� v(M

r

; r) :

This completes the induction. Choosing r = ` gives the stated lower bound.

We have thus proven that the prediction strategy MM, described above, achieves the optimal

bounds on the net-loss of any prediction strategy. However, in order to use this strategy as a pre-

diction algorithm we need to describe how to calculate the values v(M; r). At �rst, this calculation

might seem forbiddingly complex, as it involves minimizing a recursively de�ned function over all

choices of Z in the continuous domain [0; 1]

N

. Fortunately, as we now show, the minimal value

is always achieved at one of the corner points of the cube Z 2 f0; 1g

N

, so that the minimization

search space is �nite, albeit exponential. We prove this claim using the following lemma.

Lemma 3 For any �xed 0 � r � `, the function v(M; r) is concave, i.e., for any 0 � � � 1, and

for any X; Y 2 (R

+

)

N

:

v(�X + (1� �)Y; r) � � v(X; r) + (1� �)v(Y; r):

Proof: As usual, we prove the lemma by induction on r.

For r = 0, suppose i

0

is the index that minimizes

v(�X + (1� �)Y; 0) = min

1�i�N

(�x

i

+ (1� �)y

i

) :

Then the convex combination of v(X; 0) and v(Y; 0) can be bounded as follows:

� min

1�i�N

(x

i

) + (1� �) min

1�i�N

(y

i

) � �x

i

0

+ (1� �)y

i

0

= v(�X + (1� �)Y; 0):

9



For r > 0, let Z

0

2 [0; 1]

N

be a choice of the argument that minimizes

v(�X + (1� �)Y; r) = min

Z2[0;1]

N

v(�X + (1� �)Y + Z; r� 1) + v(�X + (1� �)Y + 1 � Z; r� 1)

2

Then we get

v(�X + (1� �)Y; r)

=

v(�X + (1� �)Y + Z

0

; r� 1) + v(�X + (1� �)Y + 1� Z

0

; r� 1)

2

=

v(�(X + Z

0

) + (1� �)(Y + Z

0

); r� 1) + v(�(X + 1 � Z

0

) + (1� �)(Y + 1� Z

0

); r� 1)

2

:

Using the induction assumption we can bound each of the two terms and get that

v(�X + (1� �)Y; r) �

�v(X + Z

0

; r� 1) + (1� �)v(Y + Z

0

; r� 1)

2

+

�v(X + 1 � Z

0

; r� 1) + (1� �)v(Y + 1 � Z

0

; r� 1)

2

= �

v(X + Z

0

; r� 1) + v(X + 1 � Z

0

; r� 1)

2

+(1� �)

v(Y + Z

0

; r� 1) + v(Y + 1� Z

0

; r� 1)

2

� � min

Z2[0;1]

N

v(X + Z; r� 1) + v(X + 1� Z; r� 1)

2

+(1� �) min

Z2[0;1]

N

v(Y + Z; r� 1) + v(Y + 1 � Z; r� 1)

2

= � v(X; r) + (1� �)v(Y; r):

If we �x M and view the function (v(M + Z; r � 1) + v(M + 1� Z; r � 1))=2 as a function of

Z, we see that it is simply a positive constant times the sum of two concave functions and thus it

also is concave. Therefore the minimal value of this function over the closed cube Z 2 [0; 1]

N

is

achieved in one of the corners of the cube.

This means that the function v(M; r) can be computed recursively by minimizing over the 2

N

(boolean) choices of the experts' predictions. Each of these choices involves two recursive calls and

the recursion has to be done to depth r. Therefore a total of 2

r(N+1)

recursive calls are made,

requiring time O(N2

r(N+1)

).

Dynamic programming leads to a better algorithm for calculating v(M; r). However, it is still

exponential in N . An interesting question is whether v(M; r) can be computed e�ciently.

To summarize this section, we have described an optimal prediction algorithm and given a

recursive formula which de�nes its worst case loss, and thereby obtained a recursive formula for

V

N;`

. We do not have a closed form equation for V

N;`

. However, we can always calculate it exactly

in �nite time (see Figure 5 for the values of V

N;`

for some small ranges of N and `). Moreover,

the following section provides a simple adversarial strategy which generates a lower bound on the

optimal net loss V

N;`

and Section 4 provides a simple prediction algorithm which generates an upper

bound on V

N;`

. As we will see, these two bounds are quite tight.

10



3.1 Prediction using static experts

The strategy described above can be re�ned to handle certain special cases. As an example of

this technique, we show in this section how to handle the case that all the experts are static in

the sense that their predictions do not depend either on the observed outcomes or on the learner's

predictions.

5

That is, each expert can be viewed formally as a function E

i

: f1; : : :`g ! [0; 1] with

the interpretation that the prediction at time t is �

i;t

= E

i

(t). We assume further that the learner

knows this function and thus can compute the future predictions of all the experts. Thus the

adversary must choose the static experts at the beginning of the game and reveal this choice to the

learning algorithm. The adversary still chooses each outcome y

t

on-line as before. The resulting

game is called the binary sequence prediction game with static experts and its min/max value is

denoted V

(static)

N;`

.

Since this game is easier for the minimizing player (the predictor) than the general game, it

is clear that V

(static)

N;`

� V

N;`

. When N = 2, the values of the two games are the same for all `.

However, a calculation shows that V

(static)

3;4

< V

3;4

with strict inequality, so the general sequence

prediction game is actually harder in the worst case than the same game with static experts. The

actual values are V

(static)

3;4

= 1 and V

3;4

=

17

16

.

We give below a characterization of the optimal prediction and adversarial strategies for the

binary sequence prediction game with static experts. In fact we go further and analyze the game

explicitly for every possible choice of the static experts. The resulting min/max values have a

simple geometric interpretation. For real vectors x and y of length `, let jjx�yjj

1

=

P

`

t=1

jx

t

� y

t

j.

Let E = fE

1

; : : : ; E

N

g be a set of N static experts. For any expert E

i

, its loss on the bit sequence

y is

P

`

t=1

jE

i

(t)� y

t

j = jjE

i

� yjj

1

, viewing E

i

as a vector in [0; 1]

`

. Thus L

E

(y) = min

i

jjE

i

� yjj

1

.

We de�ne the average covering radius of E , denoted R(E), as the average l

1

distance from a bit

sequence y to the nearest expert in E , that is

R(E) = E

y

L

E

(y) = E

y

min

i

jjE

i

� yjj

1

;

where E

y

denotes expectation over a uniformly random choice of y 2 f0; 1g

`

.

We will use the following convexity result, an analog of Lemma 3.

Lemma 4 Let E = fE

i

g and F = fF

i

g be two sets of N vectors in [0; 1]

`

and let 0 � � � 1. Then

R(�E + (1� �)F) � �R(E) + (1� �)R(F);

where �E + (1� �)F is the set of N vectors f�E

i

+ (1� �)F

i

g.

Proof:

R(�E + (1� �)F) = E

y

min

i

X

t

j�E

i;t

+ (1� �)F

i;t

� y

t

j

= E

y

min

i

X

t

(j�E

i;t

� �y

t

j+ j(1� �)F

i;t

� (1� �)y

t

j)

= E

y

min

i

(�jjE

i

� yjj

1

+ (1� �)jjF

i

� yjj

1

)

� E

y

(�min

i

jjE

i

� yjj

1

+ (1� �) min

i

jjF

i

� yjj

1

)

= �R(E) + (1� �)R(F);

5

In an earlier version of this paper [CBFH

+

93], we incorrectly claimed that the same analysis also applied to all

simulatable experts, i.e., experts whose predictions can be calculated as a function only of the preceding outcomes.

11



where the second equality follows from a case analysis of y

t

= 0 and y

t

= 1, combined with the fact

that E

i;t

;F

i;t

2 [0; 1].

Theorem 5 Let E be a set of static experts whose current and future predictions are accessible to

the prediction algorithm. Then there exists a prediction strategy MS such that for every sequence

y, we have

L

MS

(y)� L

E

(y) =

`

2

�R(E)

Moreover, MS is optimal in the sense that for every prediction strategy A, there exists a sequence

y such that

L

A

(y)� L

E

(y) �

`

2

� R(E):

Hence

V

(static)

N;`

=

`

2

�min

E

R(E);

where the minimum is over all sets E of N vectors in f0; 1g

`

.

Proof: For any prediction strategy A, the expected value of L

A

� L

E

with respect to a uniformly

random choice of y 2 f0; 1g

`

is simply `=2� R(E) since we expect any algorithm to have loss `=2

on an entirely random sequence, and R(E) is the expected loss of the best expert in E . Thus, there

must be some sequence y for which L

A

(y) � L

E

(y) is at least as great as this expectation; this

proves the second part of the theorem.

The �rst part of the theorem can be proved using the technique in Section 3 with only minor

modi�cations, which we sketch brie
y. First, the function v is rede�ned to take account of the

fact that the experts' predictions are pre-speci�ed. As the predictions of the experts correspond

to vectors in [0; 1]

`

, we can think about them as rows in an ` � N matrix. We can calculate the

average covering radius by considering one column (i.e., game iteration) at a time. That is, we

de�ne the new function ~v as follows:

~v(M; 0) = min

i

M

i

~v(M; r) =

~v(M + Z

r

; r� 1) + ~v(M + 1� Z

r

; r� 1)

2

where Z

r

= h�

1;t

; : : : ; �

N;t

i is the experts' predictions at trial t = `� r + 1.

The (re)proof of Lemma 1 for ~v is similar, except that we no longer minimize over Z 2 [0; 1]

N

,

and in the case that r > 0, Z

0

is replaced by Z

r

.

The new prediction strategy MS computes its prediction at time t = ` � r + 1 as before with

the obvious changes:

ŷ

t

=

~v(M

r

+ Z

r

; r� 1)� ~v(M

r

+ 1� Z

r

; r� 1) + 1

2

:

The induction argument given in the �rst part of the proof of Theorem 2 holds with little modi�-

cation. Variable v is obviously replaced by ~v, and the inductive hypothesis given by Equation (4)

is modi�ed so that equality holds for every outcome sequence:

L

MS

(y)� L

E

(y) = �

r

+

r

2

� ~v(M

r

; r) :

12



Also, Equation (5) becomes the equality:

L

MS

(y)� L

E

(y) =

�

�

r

+

r

2

�

~v(M

r

+ Z

r

; r� 1) + ~v(M

r

+ 1� Z

r

; r� 1)

2

�

= �

r

+

r

2

� ~v(M

r

; r):

By expanding ~v(0; `) according to the recursive de�nition we �nd that

~v(0; `) =

1

2

`

X

y2f0;1g

`

~v

 

`

X

r=1

(Z

r

(1� y

`�r+1

) + (1� Z

r

)y

`�r+1

) ; 0

!

=

1

2

`

X

y2f0;1g

`

~v (hjjE

i

� yjj

1

i

i=1:::N

; 0)

=

1

2

`

X

y2f0;1g

`

min

i

jjE

i

� yjj

1

= E

y

min

i

jjE

i

� yjj

1

= R(E)

Finally, it follows directly from the �rst two statements of the theorem that

V

(static)

N;`

=

`

2

� inf

E

R(E);

where the in�mum is over all sets E of N vectors in [0; 1]

`

. However, in light of Lemma 4, R(E)

must be minimized by some extremal E , i.e., by E � f0; 1g

`

. The last statement of the theorem

follows.

Theorem 5 tells us how to compute the worst-case performance of the best possible algorithm

for any set of static experts. As an example of its usefulness, suppose that E consists of only two

experts, one that always predicts 0, and the other always predicting 1. In this case Theorem 5

implies that the loss of the optimal algorithm MS is worse than the loss of the best expert by the

following amount :

`

2

� 2

�`

`

X

i=0

 

`

i

!

minfi; `� ig �

s

`

2�

:

This result was previously proved by Cover [Cov65]; we obtain it as a special case.

Strategy MS makes each prediction in terms of the expected loss of the best expert on the

remaining trials (where the expectation is taken over the uniformly random choice of outcomes

for these trials). This is why we need the experts to be static. In general, we do not know how

to e�ciently compute this expectation exactly. However, the expectation can be estimated by

sampling a polynomial number of randomly chosen future outcome sequences. Thus, there exists

an e�cient randomized variation of MS that is arbitrarily close to optimal.

3.2 An asymptotic lower bound on V

N;`

We now use Theorem 5 to give an asymptotic lower bound on the performance of any prediction

algorithm. To do this we need to show that there are sets E of N vectors in f0; 1g

`

with small

R(E). We do this with a random construction, using the following lemma.

13



Lemma 6 For each `; N � 1 let S

`;1

; : : : ; S

`;N

be N independent random variables, where S

`;i

is

the number of heads in ` independent tosses of a fair coin.

Let A

`;N

= min

1�i�N

fS

`;i

g. Then

lim inf

N!1

lim inf

`!1

`

2

�E(A

`;N

)

p

(`=2) lnN

� 1

Proof: See Appendix A.

From this we get

Corollary 7 For all N; `, let R

N;`

= min

E

R(E), where the minimum is over all E � f0; 1g

`

of

cardinality N . Then

lim inf

N!1

lim inf

`!1

`

2

� R

N;`

p

(`=2) lnN

� 1

Proof: Clearly

min

E

R(E) � E(R(E)) = E(A

`;N

);

where the expectation is over the independent random choice of N binary vectors in E , and A

`;N

is as de�ned in Lemma 6. Hence the result follows directly from that lemma.

Finally, we obtain

Theorem 8

lim inf

N!1

lim inf

`!1

V

N;`

p

(`=2) lnN

� lim inf

N!1

lim inf

`!1

V

(static)

N;`

p

(`=2) lnN

� 1:

Proof: Follows Corollary 7, Theorem 5, and the fact that V

N;`

� V

(static)

N;`

.

Hence for any � > 0 there exist su�ciently large N and ` such that V

N;`

� (1� �)

p

(`=2) lnN .

4 Some simple prediction algorithms

In this section, we present a parameterized prediction algorithm P for combining the predictions

of a set of experts. Unlike the optimal strategy outlined in Section 3, algorithm P can be imple-

mented e�ciently. The analysis of P will give an upper bound for the min/max value V

N;`

that

asymptotically matches the lower bound derived in the previous section.

4.1 The algorithm P.

The prediction algorithm P is given in Figure 2. It works by maintaining a (nonnegative) weight

for each expert. The weight of expert i at time t is denoted w

i;t

. At each time t, the algorithm

receives the experts' predictions, �

1;t

; :::; �

N;t

, and computes their weighted average, r

t

. Algorithm

P then makes a prediction that is some function of this weighted average. Then P receives the

correct value y

t

and slashes the weight of each expert i by a multiplicative factor depending on how

well that expert predicts, as measured by j�

i;t

� y

t

j. The worse the prediction of the expert, the

more that expert's weight is reduced.

Algorithm P takes one parameter, a real number � 2 [0; 1) which controls how quickly the

weights of poorly predicting experts drop. For small �, the algorithm quickly slashes the weights of

14



Algorithm P(�)

1. All initial weights fw

1;1

; : : : ; w

N;1

g are set to 1.

2. At each time t, for t = 1 to 1, the algorithm receives the predictions of the N

experts, �

1;t

; : : : ; �

N;t

, and computes its prediction ŷ

t

as follows:

� Compute

r

t

:=

P

N

i=1

w

i;t

�

i;t

P

N

i=1

w

i;t

� Output prediction ŷ

t

= F

�

(r

t

).

3. After the correct outcome y

t

is observed, the weight vector is updated in the following

way.

� For each i = 1 to N , w

i;t+1

= w

i;t

U

�

(j�

i;t

� y

t

j):

De�nition of F

�

(r) and U

�

(q).

There is some 
exibility in de�ning the functions F

�

(r) and U

�

(q) used in the algorithm.

Any functions F

�

(r) and U

�

(q) such that

1 +

ln((1� r)� + r)

2 ln(

2

1+�

)

� F

�

(r) �

� ln(1� r + r�)

2 ln(

2

1+�

)

; (6)

for all 0 � r � 1, and

�

q

� U

�

(q) � 1� (1� �)q; (7)

for all 0 � q � 1, will achieve the performance bounds established below.

Figure 2: Description of algorithm P(�), with parameter 0 � � < 1.

poorly predicting experts and starts paying attention only to the better predictors. For � closer to

1, the weights will drop slowly, and the algorithm will pay attention to a wider range of predictors

for a longer time. The best value for � depends on the circumstances. Later, we derive good choices

of � for di�erent types of prior knowledge the algorithm may have.

There are two places where the algorithm can choose to use any real value within an allowed

range. We have represented these choices by the functions F

�

and U

�

, with ranges given by (6) and

(7), respectively, in Figure 2. These are called the prediction and update functions, respectively. In

terms of our analysis, the exact choice for these functions is not important, as long as they lie in

the allowed range. In fact, di�erent choices could be made at di�erent times. The following lemma

shows that these ranges are nonempty.

Lemma 9 For any 0 � � < 1 and 0 � a � 1,

1. 1 +

ln((1�a)�+a)

2 ln

2

1+�

�

� ln(1�a+a�)

2 ln

2

1+�

2. �

a

� 1� a(1� �).

15



Proof: We begin by proving part 1. The inequality can be rewritten as

1 +

ln[(� � a� + a)(1� a + a�)]

2 ln

2

1+�

� 0:

Since 0 � � < 1, this is in turn equivalent to

ln[(� � a� + a)(1� a + a�)] � 2 ln

1 + �

2

:

Exponentiating both sides yields

(� � a� + a)(1� a + a�) �

�

1 + �

2

�

2

which holds since xy � ((x + y)=2)

2

for all real x and y (here we take x = � � a� + a and

y = 1� a + a�).

To prove part 2, notice that f(a) = �

a

is convex downward since it has nonnegative second

derivative for all � > 0. Thus, by de�nition of convex function,

f(�x

0

+ (1� �)x

1

) � �f(x

0

) + (1� �)f(x

1

)

for all x

0

; x

1

and all 0 � � � 1. The proof is then concluded by choosing x

0

= 0, x

1

= 1, and

� = 1� a.

4.2 The performance of algorithm P(�)

Algorithm P's performance is summarized by the following theorem, which generalizes a similar

result of Vovk [Vov90].

Theorem 10 For any 0 � � < 1, for any set E of N experts, and for any binary sequence y of

length `, the loss of P(�) satis�es

L

P(�)

(y) �

lnN � L

E

(y) ln �

2 ln

2

1+�

:

The proof of the theorem is based on the following lemma.

Lemma 11

L

P(�)

(y) �

ln

�

P

N

i=1

w

i;1

P

N

i=1

w

i;`+1

�

2 ln

2

1+�

:

Proof: We will show that for 1 � t � `,

jŷ

t

� y

t

j �

ln

�

P

N

i=1

w

i;t

P

N

i=1

w

i;t+1

�

2 ln

2

1+�

: (8)

16



The lemma then follows from summing the above inequality for t = 1; : : : ; `. We �rst lower bound

the numerator of the right-hand-side of the above inequality:

ln

 

P

N

i=1

w

i;t

P

N

i=1

w

i;t+1

!

= � ln

 

P

N

i=1

w

i;t

U

�

(j�

i;t

� y

t

j)

P

N

i=1

w

i;t

!

� � ln

 

P

N

i=1

w

i;t

(1� (1� �)j�

i;t

� y

t

j)

P

N

i=1

w

i;t

!

= � ln(1� (1� �)jr

t

� y

t

j);

where the inequality follows from Equation (7), and the last equality is veri�ed by a case analysis

using the fact that y

t

2 f0; 1g. Thus Equation (8) is implied by

jŷ

t

� y

t

j � �

ln(1� (1� �)jr

t

� y

t

j)

2 ln

2

1+�

:

The above splits into two inequalities since y

t

is either 0 or 1. These two inequalities are the same

as the two inequalities of (6) which we assumed for the prediction function.

Proof of Theorem 10: All initial weights equal 1 and thus

P

N

i=1

w

i;1

= N . Let j be an expert

with minimum total loss on y, that is,

P

`

t=1

j�

j;t

�y

t

j = L

E

(y): Since, by Equation (7), U

�

(q) � �

q

,

we have that

N

X

i=1

w

i;`+1

� w

j;`+1

= w

j;1

`

Y

t=1

U

�

(j�

j;t

� y

t

j)

�

`

Y

t=1

�

j�

j;t

�y

t

j

= �

L

E

(y)

:

The theorem now follows from Lemma 11.

4.3 Discussion of the algorithm

Although our algorithm allows any update function U

�

(q) between the exponential �

q

(used by

Vovk in his related work [Vov90]) and the linear function 1 � (1 � �)q that upper bounds it, it

turns out that the linear update has a nice Bayesian interpretation, and thus in some sense may

be preferable.

To get this Bayesian interpretation, we view each expert as a probability distribution on bit

sequences of length `, and pretend that the actual sequence y = y

1

; : : : ; y

`

is generated by picking an

expert uniformly at random and then generating a bit sequence of length ` at random according to

the distribution de�ned by that expert. The probability distribution for the i

th

expert is de�ned as

follows: For any y

1

; : : : ; y

t�1

, if the expert's estimate of the probability that y

t

= 1 given y

1

; : : : ; y

t�1

is �

i;t

, then the actual probability that y

t

is 1 given y

1

; : : : ; y

t�1

is de�ned to be

p

i;t

= � + (1� 2�)�

i;t

; (9)

where � = �=(1 + �). It is easy to see that p

i;t

is just the probability that y

t

is 1 if originally y

t

is set to 1 with probability �

i;t

and 0 with probability 1 � �

i;t

, and then the value of y

t

is 
ipped

with independent probability �. Hence the value � can be interpreted as a \subjective" noise rate

between 0 and 1=2. Under this interpretation, we easily obtain the following result:

17



Theorem 12 When the update function U

�

of the algorithm P(�) has the form

U

�

(q) = 1� (1� �)q;

then the (normalized) weight w

i;t

=(

P

N

j=1

w

j;t

) is the posterior probability that the outcome sequence

is being generated from the distribution de�ned in (9) above for the i

th

expert given the previous

outcomes y

1

; : : : ; y

t�1

, assuming that all N expert distributions are a priori equally likely to be

generating the sequence.

Proof: Initially w

i;1

= 1 for all i, hence the normalized initial weights are the uniform prior

distribution, as required. It su�ces to show that for each time t � 1, the ratio of successive weights

w

i;t+1

=w

i;t

is proportional to the ratio P (ijy

1

; : : : ; y

t

)=P (ijy

1

; : : : ; y

t�1

) of successive posterior prob-

abilities (with the same constant of proportionality for all i), where P (ijy

1

; : : : ; y

t

) denotes the

posterior probability that the sequence is being generated from the distribution of the i

th

expert

given y

1

; : : : ; y

t

. However, using Bayes rule

P (ijy

1

; : : : ; y

t

)

P (ijy

1

; : : : ; y

t�1

)

/

P (y

1

; : : : ; y

t

ji)

P (y

1

; : : : ; y

t�1

ji)

=

(

p

i;t

if y

t

= 1

1� p

i;t

if y

t

= 0

;

where p

i;t

is as de�ned in (9) above, and P (y

1

; : : : ; y

t

ji) denotes the probability of y

1

; : : : ; y

t

under the

distribution de�ned above for the i

th

expert. Using equation (9) with the substitution � = �=(1+�),

this implies that

P (ijy

1

; : : : ; y

t

)

P (ijy

1

; : : : ; y

t�1

)

/

(

� + (1� �)�

i;t

if y

t

= 1

1� (1� �)�

i;t

if y

t

= 0

= 1� (1� �)j�

i;t

� y

t

j:

As this is precisely the factor by which the weights are updated after seeing y

t

, this is the ratio of

successive weights w

i;t+1

=w

i;t

.

Since the weights are posterior probabilities on the experts, the weighted average r

t

of the

expert's predictions, computed by the algorithm P, also has a Bayesian interpretation: it is simply

the posterior probability that y

t

= 1 given y

1

; : : : ; y

t�1

. The only aspect of the algorithm that

does not have a Bayesian interpretation is the prediction function F

�

(r). A Bayes method would

predict 1 whenever the posterior probability r

t

is greater than 1=2 and predict 0 otherwise, in

order to minimize the posterior expectation of the loss jŷ

t

� y

t

j. Thus a Bayes method would use

a step function at 1=2 for the prediction function F

�

(r). However, as is clear from Figure 3, this

function lies outside the allowable range for F

�

(r), and this is no accident. The Bayes method does

not perform well in the worst case for this prediction problem, as was shown in [HW95, FMG92].

Hence we must deviate from the Bayes method at this step. This leads to the requirements we

have speci�ed for the prediction function F

�

(r).

One function that satis�es the requirements for F

�

is the piecewise linear function

6

F

�

(r) =

8

>

<

>

:

0 if r �

1

2

� c

1

2

�

1�2r

4c

if

1

2

� c � r �

1

2

+ c

1 if r �

1

2

+ c

(10)

6

A similar piecewise linear function was suggested by Feder, Merhav and Gutman [FMG92], in a related context.

18



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
r

low
high
vovk
lin

Figure 3: This �gure shows the upper (high) and lower (low) bounds on the possible values of the

prediction function F

�

for � = 0 (Inequality (6)). Also shown are two possible choices for F

�

, a

piecewise linear function (lin) given in (10), and the function that has been suggested by Vovk's

work (vovk) given in (11).

where c =

(1 + �) ln(

2

1+�

)

2(1� �)

:

Another possible choice for F

�

is suggested by Vovk's work

7

[Vov90]

F

�

(r) =

ln(1� r + r�)

ln(1� r + r�) + ln((1� r)� + r)

: (11)

Figure 3 contains a plot of these functions when � = 0, along with the upper and lower bounds on

F

�

given in Inequality (6). Recall that � = 0 corresponds to the case when there is no noise. In that

case � ln(1�r) is the information gain when the outcome is zero and � ln(r) is the information gain

when the outcome is one. Furthermore, the prediction function (11) is the normalized information

gain when the outcome is zero. See [HW95] for a more detailed discussion. As the noise increases,

� ! 1 and all four curves converge to the identity function.

Finally, we note that the parameterized bound given in Theorem 10 on the performance of

algorithm P was �rst proved by Vovk [Vov90] for his version of F

�

and the exponential update.

7

Vovk's algorithm generates its prediction according to the prediction function

ŷ

t

=

ln

P

N

i=1

w

i;t

�

�

i;t

ln

P

N

i=1

w

i;t

�

�

i;t

+ ln

P

N

i=1

w

i;t

�

1��

i;t

;

where the weights are normalized so that they sum to one. Note that this function depends on the experts' predictions

in a more complicated way than just through the weighted average r

t

. Hence it need not satisfy our Inequality (6).

However, when the experts' predictions are all in f0; 1g, then Vovk's prediction function is equivalent to the one

described in Equation (11).

19



L

A

(y)� L

E

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

L

E

Figure 4: This �gure describes the bounds obtained by algorithm P(�) when an upper bound on

L

E

is given. The horizontal axis corresponds to the known upper bound and the vertical axis to

L

P(�)

�L

E

. The number of experts is assumed to be 10. The thin straight lines correspond to the

upper bounds achieved by choosing � to be one of 0:001; 0:01; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8. The

continuous curve corresponds to the bound achieved when � is chosen as in Theorem 15, and the

dotted curve corresponds to the upper bound given in the theorem.

Also, Littlestone and Warmuth [LW94] prove a bound for their algorithm WMC which has the

same form as the bound of Theorem 10, except the denominator 2 ln

2

1+�

is replaced by the smaller

function 1 � �. Their algorithm uses the prediction function F

�

(r

t

) = r

t

and works for the more

general setting when the outcome y

t

can be in the interval [0; 1] as opposed to being binary. For the

noise-free case (� = 0), their algorithm becomes the Gibbs algorithm (see discussion in [HW95]).

The bound of Theorem 10 (with denominator 2 ln

2

1+�

) was recently also obtained by Kivinen and

Warmuth [KW94] for the case when the outcomes are in [0,1]. Curiously enough, the denominator

of ln

2

1+�

is obtained by the Weighted Majority algorithm of Littlestone and Warmuth [LW94] which

assumes that the outcomes are binary and predicts binary as well (See [CBFHW96] for a detailed

treatment of the case when the outcomes are binary).

4.4 Performance for bounded L

E

So far we have ignored the issue of how � is chosen. In this section we show how � can be chosen

when there is a known bound K on the loss of the best expert. When L

E

(y) is replaced by K, the

20



upper bound from Theorem 10 can be written

L(�) =

lnN �K ln �

2 ln

2

1+�

:

It has been shown by Vovk and others [Vov90, CBFHW96] that L

�

= inffL(�) : 0 � � < 1g is the

unique value of L satisfying

L =

log

2

N

2

+ L �H

�

K

2L

�

;

where H(p) is the binary entropy, �p log

2

(p)� (1� p) log

2

(1� p). This minimum is achieved when

� =

K

2L

�

�K

. However, it is di�cult to explicitly solve for L

�

and the corresponding �. A recent

paper by Cesa-Bianchi et.al. [CBFHW96] shows how binary search can be used to choose a value

for � that yields the bound dL

�

e. In this paper we give an explicit choice of � as a function of

log(N)=K which approximately minimizes

lnN�K ln�

2 ln

2

1+�

and leads to good closed-form bounds (see

Figure 4).

We will use the following function in our choice of �.

g(z) =

1

1 + 2z +

z

2

ln 2

(12)

We give g(1) its natural value of 0. The key property of this function is the following inequality.

Lemma 13 For any z > 0 or z = 1;

z

2

� ln g(z)

2 ln

2

1+g(z)

� 1 + z +

z

2

2 ln 2

:

Proof: See Appendix B.

Another simple inequality that we need in the proof is given in the following lemma.

Lemma 14 For all 0 < � < 1

� ln(�)

2 ln

2

1+�

� 1 :

Proof: Since � < 1, the lemma is equivalent to ln(�) � ln

�

1+�

2

�

2

, which follows from the trivial

inequality

� �

�

1 + �

2

�

2

:

Using the function g to make our choice of � we can obtain the following bound.

Theorem 15 Pick any positive integer N and non-negative real K. If � = g(

q

lnN

K

) for the

g de�ned in Equation (12) then for any set E of N experts and for any sequence y such that

L

E

(y) � K we have

L

P(�)

(y)� L

E

(y) �

p

K lnN +

log

2

N

2

:

21



Proof: The proof is trivial when N = 1, since the algorithm makes the same predictions as the

single expert. For the remainder of the proof we assume that N � 2, so � = g(

q

lnN

K

) is strictly

less than 1. From Theorem 10 we know that for any choice of � 2 [0; 1)

L

P(�)

(y) �

lnN � L

E

(y) ln �

2 ln

2

1+�

: (13)

We rewrite (13) as

L

P(�)

(y) � L

E

(y) +

lnN

2 ln

2

1+�

+ L

E

(y)

 

� ln �

2

1+�

� 1

!

:

From Lemma 14 we know that �

ln(�)

2 ln(2=(1+�))

� 1, and from the conditions of the theorem we know

that L

E

(y) � K. Based on these we get that

L

P(�)

(y) � L

E

(y) +

lnN

2 ln

2

1+�

+ K

 

� ln �

2

1+�

� 1

!

= L

E

(y) + K

 

z

2

� ln �

2 ln

2

1+�

� 1

!

; where z =

s

lnN

K

:

Since � was chosen to be g(z), we use the inequality of Lemma 13 to obtain

L

P(�)

(y) � L

E

(y) +

p

K lnN +

log

2

N

2

;

completing the proof.

To get a feel for the bound given in Theorem 15, it may be helpful to consider the average

per-trial loss guaranteed by the bound. Letting � = K=`, we get:

L

P(�)

(y)

`

�

L

E

(y)

`

+

s

� lnN

`

+

log

2

N

2`

:

Thus, for large `, the average loss of P approaches that of the best expert. The rate of convergence

of the average loss depends on �: for \small" �, the rate of convergence is roughly O(1=`) (for large

` and N �xed); for fairly large � (say �(1), so that K is linear in `), the middle term dominates

giving a slower convergence rate of O(1=

p

`).

4.5 Performance for known sequence length

As a corollary of Theorem 15, we can devise a choice for � that will guarantee a bound on the

di�erence between the loss of the algorithm and the loss of the best expert for the case where `,

the length of the sequence to be predicted, is given to the algorithm in advance. Theorem 8 shows

that this guaranteed di�erence is very close to optimal.

Theorem 16 Let � = g(

p

2 ln(N + 1)=`). Then for any set E of N experts, and for any sequence

y of length ` there is a prediction algorithm P

0

(�) such that

L

P

0

(�)

(y)� L

E

(y) �

s

` ln(N + 1)

2

+

log

2

(N + 1)

2

:

22



Proof: As the length of the sequence is `, the largest possible loss is `; however, this bound can

be easily decreased to `=2. To do so, we add to the N experts of P a single new expert whose

predictions are the inverse of the predictions of the �rst expert i.e., �

N+1;t

= 1� �

1;t

. We denote

the algorithm that uses the expanded pool of experts by P

0

. It is easy to see that for any y, either

L

E

1

� `=2 or L

E

N+1

� `=2. Thus, for the increased pool of experts we have L

E

� `=2 and from

Theorem 15 we get the statement of the theorem.

We remark that while the bound stated in Theorem 16 holds for all `, there is a slightly better

bound on P

0

(�) for the given choice of � when `!1 (and N remains �xed):

L

P

0

(�)

(E)� L

E

(y) �

s

` ln(N + 1)

2

+ (

1

2

+ o(1)) lnN:

This can be proved by a Taylor expansion of the bound given in Theorem 10.

Combining Theorem 8 and Theorem 16, we see that P

0

(�)'s performance is very close to optimal

for su�ciently large N and `, and we thereby obtain an upper bound on the min/max value V

N;`

of the general binary sequence prediction game de�ned in Section 3.

Theorem 17 For all N; `,

V

N;`

�

s

` ln(N + 1)

2

+

log

2

(N + 1)

2

and

lim

N!1

lim

`!1

V

N;`

p

(`=2) lnN

= lim

N!1

lim

`!1

V

(static)

N;`

p

(`=2) lnN

= 1:

Proof: The �rst statement follows from Theorem 16, and the second follows from this and Theo-

rem 8.

We have thus shown that the ratio between V

N;`

and L

P

0

(�)

(y)�L

E

(y) converges to 1 as ` and

N grow. While this is a rather strict notion of optimality, there is still a gap between the upper

and lower bounds and it is interesting to consider the actual numbers to see where improvement

might be possible. We give such comparisons in Figures 5, 6, and 7. These comparisons indicate

that the lower bound is very close to the min/max value even for small values of N and `. The

space for improvement is mostly in the upper bounds, i.e., in improving the prediction algorithm

or its analysis.

As a �nal note, we also get from Theorem 16 an interesting geometric corollary concerning the

average covering radius of a set of binary vectors. Recall that we de�ned the average covering

radius of E � f0; 1g

`

by R(E) = E

y

min

i

jjE

i

�yjj

1

; where E

y

denotes expectation over a uniformly

random choice of y 2 f0; 1g

`

, and for all N; `, we de�ned R

N;`

= min

E

R(E), where the minimum is

over all E � f0; 1g

`

of cardinality N .

Corollary 18 For all N; `,

R

N;`

�

`

2

�

s

` ln(N + 1)

2

�

log

2

(N + 1)

2

and

lim

N!1

lim

`!1

`

2

� R

N;`

p

(`=2) lnN

= 1

23



L

A

(y)� `=2

lnN

0

1

2

3

4

0 2 4 6 8 10 12 14

`= lnN

Figure 5: This �gure describes the relationship between the upper bounds guaranteed by P

0

(�)

when the length of the sequence is given to the algorithm as input and the corresponding min/max

values. The min/max values are scaled so that they can all be compared to the same upper bound.

The horizontal axis corresponds to the length of the sequence divided by ln(N), where N is the

number of experts, and the vertical axis corresponds to (L

P

0

(�)

� `=2)= ln(N). The two thick-line

curves correspond to the upper bounds given by the algorithm as in Figure 4. The four piece-wise

linear graphs correspond to the min/max values for N = 2; 3; 4; 5 and ` = 1; : : : ; 15.

Proof: Follows from Theorems 17 and 5, since V

(static)

N;`

� V

N;`

.

4.6 Prediction without prior knowledge

In the previous sections we showed how to tune � so that P(�) (or, more precisely, its slight

variant P

0

(�)) performs well when either a bound on the loss of the best expert or the length ` of

the sequence is known to the algorithm. Here we present a version of the algorithm, algorithm P

�

,

that uses neither the length of the sequence nor the loss of the best expert. Algorithm P

�

repeatedly

guesses di�erent loss bounds until it guesses a bound greater than the remaining loss of the best

expert. The gap between this algorithm's loss and the loss of the best expert is only a factor of

(roughly) 4 greater than the gap when the loss of the best expert is known.

Algorithm P

�

(see Figure 8) takes two parameters, a and c, which control how it guesses loss

bounds. We show later that one reasonable choice for these parameters is a = 2 and c = (

1+

p

5

2

)

2

.

24



L

A

(y)� `=2

lnN

0

1

2

3

4

0 2 4 6 8 10 12 14

`= lnN

Figure 6: This �gure describes the relationship between the min/max value for N = 4 (the piece-

wise linear graph) and the lower bound achieved by randomly selected static experts (the cross

marks). Three di�erent random choices are given for each selected sequence length in order to

provide an estimate of the spread of this statistical lower bound.

At the start of each iteration z of the outer loop, a bound k

z

on the best expert's remaining loss is

guessed. Algorithm P

�

resets the experts' weights to 1 and uses algorithm P(g(

p

(lnN)=k

z

)) (for

the function g de�ned in Equation (12)) to generate predictions. If the bound k

z

is correct then

the remaining loss will be no greater than a value b

z

calculated using Theorem 15. If the total

loss incurred by algorithm P during the iteration exceeds b

z

, then the guessed bound on the loss

of the best expert is incorrect

8

and algorithm P

�

increases the guessed bound by a factor of c and

proceeds to the next iteration of the outer loop. Note that the �rst iteration is iteration number

zero (z = 0).

Before analyzing algorithm P

�

, we state a few simple facts that will be needed. First, from the

description of the algorithm,

b

z

= k

z

+

p

k

z

lnN +

log

2

N

2

= k

z

+ ac

z=2

lnN +

1

2

log

2

N = k

z

+ (ac

z=2

+

1

2 ln 2

) lnN: (14)

Also, since at most one unit of loss is incurred by any prediction, the loss incurred by algorithm P

�

during any iteration number z of the outer loop is at most b

z

+ 1.

8

The bounds of this section also hold if instead we use the following stopping criterion: \Until the loss of the best

expert in this loop exceeds k

z

."

25



L

A

(y)� `=2

lnN

0

2

4

6

8

10

0 20 40 60 80 100 120 140

`= lnN

Figure 7: This �gure describes the relationship between randomly generated lower bounds and the

upper bounds for longer sequences. The cross, square, circle and diamond marks correspond to the

lower bounds for N = 2; 4; 8; 16, respectively.

Lemma 19 If algorithm P

�

exits iteration number z of the outer loop then, for all E

i

2 E, the loss

incurred by E

i

while algorithm P

�

is executing iteration number z of the outer loop is greater than

k

z

.

Proof: If some expert incurs loss at most k

z

during loop iteration number z, then algorithm P

has loss at most b

z

during this iteration (by Theorem 15), and iteration number z is not exited.

Let y

z

be the subsequence of outcomes seen during iteration number z of the outer loop. The

loss of an expert E

i

while algorithm P

�

is executing iteration number z may not be the same as

L

E

i

(y

z

). This is because the experts can be algorithms whose state changes based on the outcomes

seen. Expert E

i

may make di�erent predictions on y

z

after having seen the outcomes in previous

loop iterations than it would make on y

z

without having seen the other outcomes. It is important

that we reset only the weights of the experts that are maintained by P and not the internal states

of the experts before calling algorithm P as we want to compare the loss of P

�

with L

E

(y).

Lemma 20 Pick any a > 0 and c > 1. If \last" is the number of the last loop iteration entered by

26



Algorithm P

�

(a; c):

Parameters a > 0 and c > 1 are constants. fgood choices are a = 2 and c = (

1+

p

5

2

)

2

g

for z := 0 to 1 do f z is the loop iteration counter g

k

z

:= a

2

c

z

lnN ; f guess a bound on best expert's loss g

b

z

:= k

z

+

p

k

z

lnN +

log

2

N

2

f loss bound if guess correct g

Reset the weight of each expert to 1.

repeat

run P(g(

p

ln(N)=k

z

)) to generate a prediction

until the total loss in this loop exceeds b

z

.

Figure 8: Description of Algorithm P

�

.

P

�

(a; c) on some sequence y then

last � log

c

�

1 +

L

E

(y)(c� 1)

a

2

lnN

�

:

Proof: If last = 0 then the lemma trivially holds, so we continue under the assumption that

last � 1. If iteration number z of the outer loop is exited when algorithm P

�

runs on sequence y

then

L

E

(y) >

z

X

j=0

k

j

=

z

X

j=0

a

2

c

j

lnN = a

2

lnN

c

z+1

� 1

c� 1

:

Since last � 1 and iteration number last is entered, iteration number last � 1 is exited. Thus,

L

E

(y) � a

2

lnN

c

last

� 1

c� 1

:

Solving for last yields the desired result.

The above lemma shows that algorithm P

�

executes the outer loop a �nite number of times

whenever the loss of the best expert is bounded. Thus our bounds on algorithm P

�

hold even for

in�nite sequences, as long as the loss of the best expert is �nite over the in�nite sequence.

We now return to bounding the total loss of algorithm P

�

.

Theorem 21 Let E be a set of N experts, y be any sequence, and � be the golden ratio (1+

p

5)=2.

If L

E

(y) is �nite then for all a �

2(��1)

(2�

p

�) lnN

, the di�erence L

P

�

(y)� L

E

(y) is at most

 

�

3=2

�� 1

+

0:805

p

�

4a(ln 2)(ln�)

+

0:805

p

�

2a(lnN)(ln�)

!

q

L

E

(y) lnN + (a +

1

2 ln 2

) lnN

when algorithm P

�

uses parameters c = �

2

and a.

27



Proof: In Appendix C.

Corollary 22 If N � 7 and algorithm P

�

uses parameters c = �

2

and a = 2 then for any sequence

y,

L

P

�

(y)� L

E

(y) � 4

q

L

E

(y) lnN + 2:8 lnN:

Note that the parameter a allows one to trade o� (in a limited way) between the constant

in front of the lnN term and the constant in front of the

p

L

E

(y) lnN term. Furthermore, the

constant multiplying the (more important)

p

L

E

(y) lnN term can be made arbitrarily close to

�

3=2

=(�� 1) � 10=3 by choosing the constant a su�ciently large.

Since the algorithm P

�

is not given the length of the sequence y, the bound of Theorem 21

holds for all pre�xes y of any in�nite sequence y

0

: Di�erent experts might have minimum loss for

di�erent pre�xes of y

0

, but the loss of P

�

is always close to the best expert on each pre�x.

5 Applications to the pattern recognition problem

Up until this point we discussed the problem of predicting binary sequences, where the predictions

made by the experts are functions of past predictions and outcomes. We turn now to an application

of these results to the general pattern recognition problem as was described in the introduction.

Our goal is to approximate a stochastic mapping from an instance space X to labels f0; 1g. The

algorithm observes a set of examples of the stochastic mapping and produces a hypothesis, a rule for

predicting the labels of new instances. The goal of the learning algorithm is to produce a hypothesis

whose error (i.e., probability of mistake) is not much worse than the error of the best function in

some known class H of functions called the comparison or touchstone class [KSS94]. Outside of

the pattern recognition literature, this type of problem might be called by many names, such as

L

1

regression with a regret formulation of the loss function (in typical statistics literature, see e.g.

[BM93]), or, as mentioned in the introduction, the agnostic version of PAC learning [KSS94]. The

terminology we use here is that from the PAC learning literature.

More formally, let D be a probability distribution on X � f0; 1g.

9

We assume a sequence

s = (x

1

; y

1

); : : : ; (x

`

; y

`

) of training examples is drawn from the product distribution D

`

, i.e., each

example is drawn independently according to D. A learning algorithm A, which does not know

the distribution D, takes these training examples as input and outputs a hypothesis h = A(s) that

maps from X into [0; 1]. The error of the hypothesis h is de�ned by er

D

(h) = E

(x;y)�D

jh(x)� yj,

where E

(x;y)�D

denotes the expectation over (x; y) drawn randomly according to D.

The learning algorithm is given a priori a comparison class H consisting of a set of mappings

from X into f0; 1g. The functions in the comparison class play a role similar to that played by the

experts above. However, while the experts de�ned in Section 4 are arbitrary prediction strategies,

the comparison class contains only �xed functions which do not depend on past predictions and

outcomes. Also, we restrict these functions to output either 0 or 1 and not real numbers in the

range [0; 1]. On the other hand, the comparison class may be in�nite, while the set of experts in

Section 4 is assumed to be �nite.

Let

er

D

(H) = inf

h2H

er

D

(h)

be the error of the best function in H for the particular distribution D. The goal of the learning

algorithm is to, on average, produce a hypothesis that is almost as good as the best function in the

9

When X is uncountable, appropriate assumptions are made to insure measurability in what follows.

28



comparison class H for examples generated by the (unknown) distribution D. That is, the learning

algorithm attempts to minimize

10

the regret

E

s�D

`

(er

D

(A(s)))� er

D

(H): (15)

Bounds on this regret for certain types of learning algorithms can be obtained from the work

of Vapnik [Vap82] and Birge and Massart [BM93]. The basic idea of their learning algorithms is to

predict according to the single hypothesis that su�ers the minimal loss over the sample of instances

presented to the learner. Vapnik calls this empirical risk minimization. In this paper we obtain

better performance bounds by using an algorithm that combines the predictions of all the experts,

weighted according to their performance on the sample.

We now sketch how the techniques developed in Section 4 for the sequence prediction problem

can be applied to the pattern recognition problem. Suppose that s = (x

1

; y

1

); : : : ; (x

`

; y

`

) is the

sequence of random labeled examples presented to the learning algorithm, and let x be an instance

whose label is to be predicted. The natural way of using a sequence prediction algorithm, such as

the algorithm P, in this context is to simulate it on the sequence s, and then obtain its prediction

on the new instance x. Here we regard as experts the set of all possible labelings of the instances

x

1

; : : : ; x

`

; x that agree with some function in the comparison class H. Although the cardinality of

H may be in�nite, the number of possible binary labelings of the sequence that agree with some

function in H is always �nite, and in fact, is polynomial in ` if the VC dimension of H is �nite (see

[BEHW89] or [Vap82] for a de�nition of the VC dimension and its relation to this kind of learning

problem).

Unfortunately, we do not know how to analyze an algorithm of this type, since the bounds that

we have for our sequence prediction algorithms hold only for the cumulative loss over the entire

sequence, and not the loss at any particular time step. To handle this di�culty, we de�ne a more

complicated scheme that uses the sequence prediction algorithm in a more elaborate way. Instead

of placing the unlabeled example at the end of the sequence, we insert it in all possible positions in

the sequence s and take the average of the predictions so obtained. More precisely, for every choice

of index i = 0; : : : ; `, we insert the unlabeled example between examples i and i+ 1, producing the

sequence (x

1

; y

1

); : : : ; (x

i

; y

i

); (x; ?); (x

i+1

; y

i+1

); : : : ; (x

`

; y

`

). We simulate our prediction algorithm

P on each of these sequences to obtain ` + 1 predictions of x's label and output their average. A

simple argument, which will be given in Section 5.2, bounds the expected error of this learning

algorithm. Similar methods were previously used by Helmbold and Warmuth [HW95].

Before using algorithm P as the sequence prediction algorithm, we need to choose the parameter

�. We analyze two methods for tuning � in this context. The �rst method is to tune � according to

the length of the sample, using the results of Section 4.5. These results are described in Section 5.2.

The drawback of this method is that the dependence of the regret of the learning algorithm on the

sample size ` is of order O(1=

p

`) even if the loss of the best function in H is very small. By using

a much more sophisticated choice of � we can improve the upper bound on the regret to O(1=`)

when er

D

(H) is small. These results are described in Section 5.3.

5.1 Further de�nitions

Before stating our results, we need to make a few further de�nitions. Our �rst de�nition deals with

the issue of optimizing the error on the training examples (called empirical error) versus optimizing

10

Typically, in the PAC learning literature, tail bounds are also given that bound the probability that the hypothesis

returned is signi�cantly worse than the best hypothesis in H. Our current methods do not provide these, but standard

\con�dence boosting" methods can be applied on top of them to achieve good tail bounds [HKLW91, Lit89]. More

direct methods are given by Littlestone and Warmuth [LW94].

29



er

D

, the error with respect to the underlying distribution D. This is often referred to as the problem

of over-�tting. Let

b

er

`;D

(H) = E

s�D

`

inf

h2H

1

`

`

X

t=1

jh(x

t

)� y

t

j:

Thus

b

er

`;D

(H) is the expected empirical error of the hypothesis in H that does best on a random set

s = (x

1

; y

1

); : : : ; (x

`

; y

`

) of ` training examples drawn independently according to the distribution

D. The quantity

er

�

`;D

(H) = er

D

(H) �

b

er

`;D

(H)

will be called the expected over-�t for ` training examples. It is clear that this quantity is nonnegative

for any `, D and H, since

er

D

(H) = inf

h2H

er

D

(h)

= inf

h2H

E

s�D

`

1

`

`

X

t=1

jh(x

t

)� y

t

j

� E

s�D

`

inf

h2H

1

`

`

X

t=1

jh(x

t

)� y

t

j

=

b

er

`;D

(H):

In other words, the expected empirical error of the best hypothesis on the training examples is

always smaller than the expected error of the asymptotically best hypothesis on a set of random

\test" examples.

We also will need a formal notation for the set of all label sequences that agree with some

function in H. For any comparison class H and sequence x = x

1

; : : : ; x

`

, let us de�ne

H

j

x

= f(h(x

1

); : : : ; h(x

`

)) : h 2 Hg:

We call H

j

x

the restriction of H to x.

5.2 The basic bound

Theorem 23 For any instance space X and any comparison class H on X, there exists a learning

algorithm A such that for all ` and all distributions D on X � f0; 1g

E

s�D

`
(er

D

(A(s)))� er

D

(H) �

E

x

q

ln(jH

j

x

j+ 1)

p

2(`+ 1)

+

E

x

(log

2

(jH

j

x

j+ 1))

2(` + 1)

� er

�

`+1;D

(H);

where E

x

denotes expectation over x = x

1

; : : :x

`+1

, each x

t

drawn independently at random ac-

cording to the marginal of D on X.

Proof: We de�ne the learning algorithm A by describing its hypothesis, h. Given the sequence

of examples s = (x

1

; y

1

); : : : ; (x

`

; y

`

), and instance x, we de�ne h(x) as follows. First, for each

1 � t � `+1, let x

(t)

= x

1

; : : : ; x

t�1

; x; x

t

; : : : ; x

`

and let E

(t)

= H

j

x

(t)

. Thus there is an expert in E

(t)

for each possible labeling of x

(t)

that agrees with some function in the comparison class H. Note that

the experts in E

(t)

are the same as the experts in E

(t+1)

except that the predictions on trials t and t+1

are swapped due to the di�erent placement of x. Let N = jE

(t)

j and � = g(

p

2 ln(N + 1)=(`+ 1)).

30



For each 1 � t � ` + 1 let ŷ

t

denote the prediction of the sequence prediction algorithm P

0

(�)

de�ned in Section 4.5 after seeing outcomes y

1

; : : : ; y

t�1

, and the �rst t predictions of the experts

in E

(t)

. The value of the function h = A(s) on input x is de�ned by the average of the ŷ

t

's, i.e.,

h(x) =

1

`+1

P

`+1

t=1

ŷ

t

.

To show that this strategy A has the desired performance, �rst note that

E

s�D

`

(er

D

(A(s))) = E

s�D

`

;(x;y)�D

jA(s)(x)� yj

= E

s�D

`

;(x;y)�D

�

�

�

�

�

 

1

` + 1

`+1

X

t=1

ŷ

t

!

� y

�

�

�

�

�

;

where ŷ

t

is as de�ned in the previous paragraph, and s = (x

1

; y

1

); : : : ; (x

`

; y

`

).

Because j(

1

n

P

n

t=1

p

t

)� cj =

1

n

P

n

t=1

jp

t

� cj for c 2 f0; 1g and 0 � p

t

� 1, it follows that

E

s�D

`
(er

D

(A(s))) = E

s�D

`

;(x;y)�D

1

` + 1

`+1

X

t=1

jŷ

t

� yj

=

1

` + 1

`+1

X

t=1

E

s�D

`

;(x;y)�D

jŷ

t

� yj (16)

=

1

` + 1

`+1

X

t=1

E

(x;y)�D

`+1
jŷ

0

t

� y

t

j; (17)

where, in analogy with the de�nition of ŷ

t

, we de�ne ŷ

0

t

as the prediction of P

0

(�) after observing

the outcomes y

1

; : : : ; y

t�1

and the �rst t predictions of the experts in H

j

x

, where x = x

1

; : : : ; x

`+1

,

and � = g(

q

2 ln(jH

j

x

j+ 1)=(`+ 1)).

Let L

P

0

(�)

(x;y) =

P

`+1

t=1

jŷ

0

t

� y

t

j, the total loss of the prediction strategy P

0

(�) for instances

x = x

1

; : : : ; x

`+1

and outcomes y = y

1

; : : : ; y

`+1

, assuming the set of experts is H

j

x

. It follows from

the above that

E

s�D

`

(er

D

(A(s))) =

1

` + 1

E

(x;y)�D

`+1

L

P

0

(�)

(x;y): (18)

Furthermore, it is clear that for all `

b

er

`;D

(H) = E

(x;y)�D

`

1

`

inf

h2H

`

X

t=1

jh(x

t

)� y

t

j

= E

(x;y)�D

`

1

`

L

H

j

x

(x;y); (19)

where L

H

j

x

(x;y) is the total loss of the best expert in H

j

x

on the outcome sequence y.

It follows from Equations (18) and (19) and the de�nition of expected over-�t that

E

s�D

`

(er

D

(A(s)))� er

D

(H)

= E

s�D

`

(er

D

(A(s)))�

b

er

`+1;D

(H) � (er

D

(H)�

b

er

`+1;D

(H))

=

1

` + 1

E

(x;y)�D

`+1
L

P

0

(�)

(x;y)�

1

` + 1

E

(x;y)�D

`+1
L

H

j

x

(x;y)� er

�

`+1;D

(H)

=

1

` + 1

E

(x;y)�D

`+1

�

L

P

0

(�)

(x;y)� L

H

j

x

(x;y)

�

� er

�

`+1;D

(H)

31



By Theorem 16, for any x and y of length ` + 1,

L

P

0

(�)

(x;y)� L

H

j

x

(x;y) �

s

(` + 1) ln(jH

j

x

j+ 1)

2

+

log

2

(jH

j

x

j+ 1)

2

:

The result follows.

It is easy to see that the constant in the leading term of the bound in Theorem 23 is the best

possible. The argument is similar to the lower bound argument we used for prediction strategies.

We assume that the distribution D is such that for a random example (x; y), the value y is 1

with probability 1=2 and 0 with probability 1=2, independent of x. Hence, every hypothesis h has

er

D

(h) = 1=2. This implies that E

s�D

`

(er

D

(A(s)))� er

D

(H) = 0 for any comparison class H and

algorithm A.

Now assume in addition that X is a large �nite set and the marginal of D on X has a uniform

distribution. Let us choose each of the N functions h

1

; : : : ; h

N

to be included in the comparison

class H at random by letting h

i

(x) = 1 with probability 1=2 and h

i

(x) = 0 with probability 1=2

independently for each i, 1 � i � N , and each instance x 2 X . Then Lemma 6 implies that for

any �xed sample size ` + 1, in the limit of large X , the expectation (with respect to the random

choice of H) of the expected over-�t er

�

`+1;D

(H) is (1 + o(1))

p

lnN

p

2`

. This is because in this limit all

the x

1

; : : : ; x

`+1

are distinct with probability one, and the values jh

i

(x

t

)� y

t

j are distributed like

independent coin 
ips for 1 � i � N and 1 � t � ` + 1. It follows that there exists a sequence of

comparison classes H such that the expected over-�t er

�

`+1;D

(H) is (1 + o(1))

p

lnN

p

2`

.

The expected over-�t appears with a minus sign on the right hand side of the bound in Theorem

23. Hence for this bound to be nonnegative, as required in this case, the constant in the �rst term

on the right hand side must be at least (1 + o(1))=

p

2. This shows that this constant cannot be

improved in general.

5.3 Re�ned result

The result of the previous theorem can be improved by a more sophisticated choice of �.

Theorem 24 For any instance space X and any comparison class H on X, there exists a learning

algorithm A such that for all ` and all distributions D on X � f0; 1g

E

s�D

`

(er

D

(A(s)))� er

D

(H)

�

q

b

er

`+1;D

(H)(

p

T + 1)

p

` + 1

+

T= ln 2 + 3

p

T + 1

` + 1

� er

�

`+1;D

(H) (20)

�

p

er

D

(H)(

p

T + 1)

p

` + 1

+

T= ln 2 + 3

p

T + 1

` + 1

� er

�

`+1;D

(H); (21)

where T = E

x

ln jH

j

x

j.

The proof of this theorem is given in the next section. Our �rst attempt to prove it followed

the proof of the previous theorem with the di�erent choice � = g(

p

(lnN)=K), where K is the best

upper bound that can be obtained on the total loss of the best expert in E

(t)

. Then in the last step,

Theorem 15 is used instead of Theorem 16. Since we know all the predictions of the experts and

all the outcomes but the one for the instance x, we can estimate the total loss of the best expert

32



to within 1, and choose � accordingly. It remains an open problem to prove a bound on the regret

for this approach that is comparable to the bound given in Theorem 5.3.

The subtle di�culty we encountered in trying to prove such a bound is in moving from Equa-

tion (16) to Equation (17). In Equation (16), ŷ

t

is the prediction made by the algorithm on the

additional instance (x; y) when it is inserted into position t of sequence s. Thus ŷ

t

depends on

the previous elements of the sequence, the current predictions of the experts, and the choice of �.

In Theorem 23, � is a �xed function of the length of the sequence, and thus the prediction ŷ

t

is

identical to the prediction made by P(�). This is why we can replace ŷ

t

by ŷ

0

t

.

Unfortunately, when we choose � as a function of the examples in s, this substitution of ŷ

0

t

for

ŷ

t

is impossible. Because a di�erent � is chosen for each position t, the sequence of predictions ŷ

0

t

no longer corresponds to the predictions generated by a single run of P(�), and so we cannot derive

Equation (18). (Recall that the performance bound on P(�) requires that � is held constant.)

There are several ways one could attempt to patch this 
aw, but despite much e�ort we were

unable to �nd a simple �x. The approach that was ultimately successful deals directly with pre-

diction when all but one outcome is available. This setting is reminiscent of that obtained when

using the \hold-one-out" method of cross validation, commonly used in statistics. Results for this

setting are given in the next section, as is the proof of Theorem 24.

The bounds given in Theorem 24 are better than those obtained for this kind of pattern recog-

nition problem by the only other methods that we are aware of [Vap92, Tal94, BM93]. Bounds

given by Vapnik ([Vap92], Equation (11)) imply a bound in the same form as the second bound

in Theorem 24, but with an additional factor of 2 in the leading term. However, Vapnik's bounds

hold in more general cases than the one we consider here. Talagrand [Tal94] gives similar general

bounds without the factor of 2, but with an unspeci�ed constant in the lower order term. It is not

clear that this unspeci�ed constant can be made small enough to get practical bounds for small

sample size `. Bounds obtained by Birge and Massart also contain constants that are di�cult to

bound [BM93]. Thus our approach to the pattern recognition problem through worst case analysis

of the sequence prediction problem appears to be a fruitful one.

5.4 The hold-one-out model of prediction and proof of Theorem 24

In this subsection we discuss a slightly di�erent prediction problem. After developing a theory of

this prediction problem, we will be in a position to prove Theorem 24.

Let x = x

1

; : : : ; x

`

be a sequence of instances chosen from an arbitrary set X , y = y

1

; : : : ; y

`

be

a sequence of binary outcomes, and E = fE

1

; : : : ; E

N

g be a set of experts. In this section we will

assume that each expert E

i

is a function from X into [0; 1], i.e., the i

th

expert's prediction at time

t, denoted �

i;t

, depends only on the instance x

t

, and not on previous outcomes or instances. As in

Section 3.1, we call such experts static.

11

For a �xed sequence x of instances, they are equivalent

to the static experts de�ned there. As in the previous sections, the total loss of the i

th

expert is

L

E

i

(x;y) =

P

`

t=1

j�

i;t

� y

t

j, and the total loss of the best expert is L

E

(x;y) = min

1�i�N

L

E

i

(x;y).

In hold-one-out prediction, the goal is still to predict almost as well as the best expert, but the

prediction algorithm is allowed more information to help it make its predictions. In particular,

when asked to predict the outcome y

t

, the prediction algorithm is provided with all the instances

x = x

1

; : : : ; x

`

, the entire matrix �

i;t

, 1 � i � N , 1 � t � `, giving the advice of each expert on

each instance, and the outcomes y

1

; : : : ; y

t�1

; y

t+1

; : : : ; y

`

, i.e., all outcomes except y

t

. Given this

input, a hold-one-out prediction algorithm produces a prediction ŷ

t

2 [0; 1]. The total hold-one-out

11

Thus a static expert is simply a regression function (or \p-concept" [KS94]) from the instance space X into [0;1],

the value of which represents a conditional probability of the label 1 given the input instance x

t

.

33



loss of the prediction algorithm A on outcome sequence y is de�ned in analogy with the on-line

prediction loss as HL

A

(x;y) =

P

`

t=1

jŷ

t

�y

t

j. This total loss can be viewed as the sum of the losses

of ` separate runs of the algorithm, where in each run the algorithm is asked to predict a di�erent

outcome y

t

. The motivation for the name \hold-one-out" loss comes from the similarity to the

cross-validation procedure of the same name used in statistics [Sto77].

The following example illustrates the use of the total hold-one-out loss. Consider a classroom

setting in which an instructor is trying to teach students to perform a classi�cation task of some

type, say to distinguish earthquakes from underground nuclear explosions, based on seismographic

data. Suppose that the teacher has collected a sequence of labeled examples (x

1

; y

1

); : : : ; (x

`

; y

`

),

where for each t, 1 � t � `, the instance x

t

is a vector of seismic measurements and the label

y

t

is a binary value, with 1 representing earthquake and 0 representing underground explosion.

Let x = x

1

; : : : ; x

`

and y = y

1

; : : : ; y

`

. The teacher shows each of the examples to the students

(the experts in this example), in random order, �rst showing them the measurement vector x

t

,

then asking each student to predict the classi�cation y

t

, and �nally providing actual label y

t

as

feedback. A prediction is a number p 2 [0; 1] and the loss is jp� y

t

j as above. However, instead of

considering total loss, here the teacher only counts the loss on the last example shown, considering

the other examples to be merely training cases. The choice of which example is shown last (called

the \test" example) is random. Now imagine that you are auditing the class because of your

extremely limited knowledge of seismology. Nevertheless, you still want to impress the teacher in

hopes of eventually being admitted to the program. Can you or any algorithm A, after seeing all

the instances x

1

; : : : ; x

`

, hearing all the students predictions for each of these instances, including

the test instance, and seeing all the labels except that of the test instance, predict the label of

the test instance in such a way that your expected loss, averaged over possible choices of the test

instance, is not much more than that of the best student in the class?

Instead of averaging over all choices of the last instance, we can equivalently consider the

experiment in which the examples stay in the �xed order (x

1

; y

1

); : : : ; (x

`

; y

`

), but for t from 1 to

` we perform a series of experiments with the algorithm A, each time covering only the label y

t

and forcing the algorithm to predict this label, based on the ` instances, the prediction of each

expert on each instance, and the label of all the instances except x

t

. Clearly the total hold-one-out

loss HL

A

(x;y) is the total loss obtained by all these experiments. Thus the average loss of the

algorithm in predicting a randomly chosen test instance is just HL

A

(x;y)=`.

Note that we have restricted our analysis of the hold-one-out loss to the case of static experts.

For this type of loss, we must be careful about how much power we give the experts. Consider the

case in which there are just two experts E

0

and E

1

, and E

0

always predicts that the sequence of

binary values y = y

1

; : : : ; y

`

will have even parity, while E

1

always predicts that y will have odd

parity. Clearly the predictions of each of these experts for y

t

can easily be expressed as a function

of the values y

1

; : : : ; y

t�1

; y

t+1

; : : : ; y

`

, ignoring the instances. Moreover, any sequence y either has

even or odd parity. Thus for any sequence y one of the two experts predicts each held out label

correctly! Yet for any prediction algorithm A there is always a sequence that forces total loss `=2,

since this is the average loss obtained on a random sequence. It is thus clear that to get a useful

worst-case model in the hold-one-out setting, one needs to restrict the experts. Restricting to static

experts is one natural choice.

It should be clear that any on-line prediction strategy can also be used as a hold-one-out pre-

diction strategy: the hold-one-out version of the strategy simply ignores the additional information

available to it and makes its prediction of y

t

based solely on the instances x

1

; : : : ; x

t

, the predictions

of the experts on these instances, and the outcomes y

1

; : : : ; y

t�1

. In this case the total hold-one-out

loss is the same as the total on-line loss. One might suppose, however, that signi�cantly smaller

34



hold-one-out losses could be obtained by employing more sophisticated strategies that take into

account all the information that is available. Curiously, this is not true, at least in the worst case,

as we show below.

Let us de�ne the hold-one-out prediction game for a given N and ` by assuming that the

adversary chooses a set E of N static experts, a sequence x of ` instances and a sequence y of `

outcomes, and then the predictor is given ` separate prediction problems based on these choices,

where in each problem a di�erent outcome is held out and must be predicted on the basis of the

other information as described above. Let V

(H)

N;`

denote the min/max value of this game, i.e., the

minimum over all hold-one-out prediction strategies A of the maximum over all choices of the

adversary of the di�erence HL

A

(x;y)�L

E

(x;y). It turns out that this min/max value is the same

as that of the on-line prediction game with static experts given in Theorem 5.

Before we state the analog of Theorem 5 for the hold-one-out prediction game, recall that

we de�ned the average covering radius of S � f0; 1g

`

as R(S) = E

y

min

s2S

jjs � yjj

1

; where

E

y

denotes expectation over a uniformly random choice of y 2 f0; 1g

`

, and that for any set of

functions E from X into [0; 1] and any sequence x = x

1

; : : : ; x

`

of instances in X , we de�ned

E

j

x

= f(f(x

1

); : : : ; f(x

`

)) : f 2 Eg.

Theorem 25 Let E be a set of static experts and x be a sequence of ` instances. Then there exists

a hold-one-out prediction strategy A such that for every sequence y, we have

HL

A

(x;y)� L

E

(x;y) =

`

2

� R(E

j

x

):

Moreover, A is optimal in the sense that for every hold-one-out prediction strategy B, there exists

a sequence y such that

HL

B

(x;y)� L

E

(x;y) �

`

2

� R(E

j

x

):

Hence

V

(H)

N;`

= V

(static)

N;`

=

`

2

�min

S

R(S);

where the minimum is over all sets S of N vectors in f0; 1g

`

.

Proof: We simply let A be the optimal on-line prediction strategyMS from the proof of Theorem 5,

used as a hold-one-out prediction strategy, ignoring the outcomes y

t+1

; : : : ; y

`

when predicting the

outcome y

t

. Since the net loss HL

A

(x;y)� L

E

(x;y) is the same for the hold-one-out game as it is

for on-line prediction, this gives the �rst statement of the theorem. The second statement follows

from the fact that if y is chosen at random, then the expectation of HL

B

(x;y)�L

E

(x;y) is equal to

the right-hand-side for any hold-one-out prediction strategy B. Finally, the last statement follows

by the same argument used in the proof of Theorem 5 to prove the analogous statement.

The optimal algorithm MS is not very e�cient. We get a simple, e�cient, and nearly optimal

hold-one-out prediction strategy by using the on-line prediction algorithm P. From the above

theorem and Theorems 8 and 16 we have:

Theorem 26 Let P(�) be the on-line prediction algorithm de�ned in Section 4. For all ` and N ,

if � is chosen to be g(

p

2 ln(N + 1)=`), where g is as de�ned in Equation (12), then for any set

E of N static experts, and any sequences x and y of length `, the total hold-one-out loss of P is

bounded by

HL

P

(x;y)� L

E

(x;y) �

s

` ln(N + 1)

2

+

log

2

(N + 1)

2

;

and the constant in the leading term on the right-hand-side cannot be improved.

35



Algorithm B(t):

f The algorithm receives a sequence of instances, x = x

1

; : : : ; x

`

, a sequence of binary

outcomes, y = y

1

; � � � ; y

t�1

; ?; y

t+1

; � � � ; y

`

, where the tth position is marked with a \?",

and the predictions E

i;j

of each expert E

i

for 1 � i � N on each instance x

j

for 1 � j � `.

The algorithm produces a prediction ŷ

t

for the held out outcome y

t

. g

1. Pick r 2 [0; 1] uniformly at random;

2. Compute L

obs

(t) = min

i

P

j 6=t

jE

i;j

� y

j

j;

3. Compute L

est

(t) =

�lq

L

obs

(t) + 1� r

m

+ r

�

2

;

4. Compute � = g

�

q

lnN=L

est

(t)

�

, where g is the function de�ned in (12). Run

algorithm P(�) on the sequence of instances x

1

; : : : ; x

t

and observations y

1

; : : : ; y

t�1

,

and predict with the ŷ

t

(for y

t

) generated by P.

Figure 9: Description of algorithm B for hold-one-out prediction.

When the value L

E

(x;y) is given, we can use algorithm P with an appropriately tuned � (as

in Theorem 15) to get a better hold-one-out prediction algorithm. In this case we get an algorithm

that has hold-one-out loss at most L

E

(x;y) +

p

L

E

(x;y) lnN +

log

2

N

2

. When neither this value nor

the length of the sequence is available, algorithm P

�

, which iteratively guesses the loss of the best

expert, can be used. However, algorithm P

�

ignores the extra information provided and its bound

has a factor greater than one multiplying the

p

L

E

lnN term. It is better to use the observed losses

of the experts on the `� 1 outcomes provided to estimate L

E

(x;y). Unfortunately, we are unable

to show that when these estimates are plugged directly into algorithm P, a small total loss results.

As mentioned in Section 5.3, the problem is that di�erent runs of the algorithm could use di�erent

values of � resulting in di�erent predictions. Conceivably, the worst prediction in each run could

be the one used to predict the held out label.

Our solution is to discretize the estimated total loss and let � be a function of the estimate. A

little randomization is used to ensure that the estimate is likely to be the same regardless of which

label is held out. The resulting algorithm is algorithm B, described in Figure 9. The estimated

loss is determined in Step 3. We show that for this choice of the estimate, the probability that all

of the estimates are the same increases with the loss of the best expert.

Note that the hypothesis of algorithm B is probabilistic since it depends on a value r chosen

uniformly at random in the interval [0; 1]. It is easy to get a deterministic version of algorithm

B: Run algorithm B q times in parallel, where the ith copy uses the �xed

i

q

as its choice for r

(0 � i � q � 1): The new deterministic algorithm DB simply predicts with the average of the q

predictions. We still need to specify the choice of q. As q grows the worst case loss of algorithm DB

converges to the expected worst case loss of algorithm B, where the latter expectation is over the

uniform choice of r 2 [0; 1]. We choose q = ` +

�

p

` + 1 + 1

�

p

lnN +

lnN

2 ln2

, where ` is the number

of trials. For this choice we prove in the theorem below that the worst case loss of algorithm DB

is at most one larger than the bound we prove on the worst case expected loss of algorithm B.

Theorem 27 The hold-one-out prediction algorithms B and DB have the property that for any x,

36



any set of static experts E, and any sequence y

E

r�[0;1]

(HL

B

(x;y)) � L

E

(x;y) +

q

L

E

(x;y)(

p

lnN + 1) + 3

p

lnN +

ln(N)

ln 2

and

HL

DB

(x;y) � L

E

(x;y) +

q

L

E

(x;y)(

p

lnN + 1) + 3

p

lnN +

ln(N)

ln 2

+ 1 :

Recall that in the case when L

E

(x;y) is given to the algorithm, the algorithm P with its

parameter � properly tuned as a function of L

E

(x;y) has hold-one-out loss at most L

E

(x;y) +

p

L

E

(x;y) lnN+

log

2

N

2

(see Theorem 15). Note that the bounds of the above theorem for algorithms

that do not have L

E

(x;y) available are not too much larger. We develop the proof of this theorem

in a sequence of lemmas.

Lemma 28 Choose any set of experts E, and sequences x and y of length `. For each r 2 [0; 1] we

have that for all 1 � t � `,

L

est

(t) 2 fL

�

r

;L

+

r

g; where

L

�

r

= (d

q

L

E

(x;y)� re+ r)

2

and L

+

r

= d(

q

L

E

(x;y) + 1� re+ r)

2

:

Proof: Since the loss in any trial lies in [0; 1], we have

L

obs

(t) � L

E

(x;y) � L

obs

(t) + 1;

L

E

(x;y) � L

obs

(t) + 1 � L

E

(x;y) + 1 and

q

L

obs

(t) + 1 2

�

q

L

E

(x;y);

q

L

E

(x;y) + 1

�

:

This interval is of length at most 1. Thus the ceiling function in the computation of L

est

(t) can

take at most two values and the lemma follows.

Note that the set fL

�

r

;L

+

r

g depends on r but not on t. Thus for each r 2 [0; 1] the two possible

values for L

est

(t) are the same for all choices of t. We will show that for most r the two values for

L

est

(t) are actually the same for all t.

Let L

r

(t) be the loss of B(t) when predicting the single value y

t

after seeing all ` examples

except the label y

t

and picking the value r. When r is drawn uniformly at random from [0; 1], the

expected total loss of B(t), summed over choices of t, is

E

r�[0;1]

(HL

B

(x;y)) =

`

X

t=1

Z

1

0

L

r

(t)dr =

Z

1

0

 

`

X

t=1

L

r

(t)

!

dr: (22)

We now consider the expectation over r 2 [0; 1] of

P

`

t=1

L

r

(t).

Lemma 29 Choose any set of experts E, and sequences x and y of length `, and let L

�

r

and L

+

r

be

de�ned as in Lemma 28.

Then for any r 2 [0; 1] such that for all 1 � t � ` we have L

est

(t) = L

�

r

,

`

X

t=1

L

r

(t) � L

E

(x;y) +

�

q

L

E

(x;y) + 1

�

p

lnN +

lnN

2 ln 2

= low:

Similarly, for any r 2 [0; 1] such that for all 1 � t � ` we have L

est

(t) = L

+

r

,

`

X

t=1

L

r

(t) � L

E

(x;y) +

�

q

L

E

(x;y) + 1 + 1

�

p

lnN +

lnN

2 ln 2

= high:

37



Proof: We only prove the �rst bound. The proof of the second bound is identical. Since L

E

(x;y) �

L

obs

(t) + 1 � L

est

(t) = L

�

r

, we can apply Theorem 15:

`

X

t=1

L

r

(t) � L

E

(x;y) +

q

L

�

r

lnN +

lnN

2 ln 2

: (23)

Because dx � re + r � x � r + 1 + r = x + 1; we have L

�

r

� (

p

L

E

(x;y) + 1)

2

. Thus the RHS of

inequality (23) is upper bounded by \low".

In the proof of the following most important lemma of this section we show that most of the

time we get a total loss of \low" and only rarely a total loss of at most \low + high". The resulting

upper bound is only slightly larger than \low".

Lemma 30 For any set of experts E and sequence y of length `,

E

r�[0;1]

(HL

B

(x;y)) � low +

�

q

L

E

(x;y) + 1�

q

L

E

(x;y)

�

high;

where low and high are de�ned as in Lemma 29.

Proof: Let us �rst consider the case when r is such that L

�

r

= L

+

r

: Then each B(t) chooses

L

est

(t) = L

�

r

and by Lemma 29

`

X

t=1

L

r

(t) � low: (24)

In the remaining case r is such that L

�

r

6= L

+

r

: Now the B(t) might use either L

est

(t) = L

�

r

or

L

est

(t) = L

+

r

for each t. In that case the sum of the L

r

(t) is at most the sum of L

r

(t) when all

L

est

(t) = L

�

r

plus the sum of the L

r

(t) when all L

est

(t) = L

+

r

:

`

X

t=1

L

r

(t) � low + high: (25)

Let Z+ r = fk + r : k 2 Zg be the set of integers shifted by r 2 [0; 1]. We will �rst show that

L

�

r

6= L

+

r

i� a point fromZ+r lies in interval [

p

L

E

(x;y);

p

L

E

(x;y) + 1) which is of length at most

one. (Note that L

�

r

and L

+

r

are the values obtained when applying the mapping d

r

(x) = (dx�re+r)

2

to the left and right boundary of the interval.) If a point k + r lies in the interval, then it and the

left boundary of the interval map to (k + r)

2

. Also, any point in the interval that is larger than

k + r (including the right boundary of the interval) maps to (k + 1 + r)

2

. On the other hand if

L

�

r

6= L

+

r

then let p be the largest point in the interval that maps to L

�

r

. Clearly p must be in

Z+ r.

The probability that L

�

r

6= L

+

r

equals the probability that the interval [

p

L

E

(x;y);

p

L

E

(x;y) + 1)

contains a point of Z+ r. Since r is drawn uniformly in [0; 1] and since the interval has length

at most one, this probability equals the length of the interval, that is

p

L

E

(x;y) + 1�

p

L

E

(x;y).

This allows us to average inequalities (24) and (25) to get

`

X

t=1

L

B(t)

=

Z

1

0

(

`

X

t=1

L

r

(t))dr

�

�

1�

�

q

L

E

(x;y) + 1�

q

L

E

(x;y)

��

low +

�

q

L

E

(x;y) + 1�

q

L

E

(x;y)

�

(low + high)

= low +

�

q

L

E

(x;y) + 1�

q

L

E

(x;y)

�

high:

38



Proof of Theorem 27: For the �rst part of the theorem, which is a bound on E

r�[0;1]

(HL

B

(x;y)),

what remains to be done is to simplify the upper bound of Lemma 30. First observe that

�

q

L

E

(x;y) + 1�

q

L

E

(x;y)

�

high �

1

p

L

E

(x;y) + 1

high

�

q

L

E

(x;y) +

 

1 +

1

p

L

E

(x;y) + 1

!

p

lnN

+

 

1

p

L

E

(x;y) + 1

!

lnN

2 ln 2

Plugging this into the bound of the lemma we get

E

r�[0;1]

(HL

B

(x;y)) � L

E

(x;y) +

q

L

E

(x;y)(

p

lnN + 1) +

 

2 +

1

p

L

E

(x;y) + 1

!

p

lnN

+

 

1

p

L

E

(x;y) + 1

+ 1

!

lnN

2 ln 2

� L

E

(x;y) +

q

L

E

(x;y)(

p

lnN + 1) + 3

p

lnN +

lnN

ln 2

:

For the second part, view algorithm DB as a version of algorithm B where r is chosen uniformly

from the �nite set f

i

q

: 0 � i � q�1g instead of uniformly from the continuous interval [0; 1]. (Recall

that q = ` + (

p

` + 1 + 1)

p

lnN + lnN=(2 ln 2) and this choice of q is at least as large as the value

high.) In Lemma 30 we showed that the expected hold-one-out loss is at most low + p high,

where p is the probability of the event that the set fk + r : k 2 Zg has a point in the interval

[

p

L

E

(x;y);

p

L

E

(x;y) + 1). If r 2 [0; 1], then p equals the length of the interval and in the case

r 2 f

i

q

: 0 � i � q � 1g the probability p equals the length plus or minus 1=q. Since q � high, we

get the following upper bound on the total hold-one-out loss of algorithm DB:

HL

B

(x;y) � low +

�

q

L

E

(x;y) + 1�

q

L

E

(x;y) +

1

q

�

high

� low +

�

q

L

E

(x;y) + 1�

q

L

E

(x;y) +

1

high

�

high:

Thus the bound in the second part is at most one larger than the bound proven in the �rst part.

We are �nally now in a position to return to the pattern recognition problem considered in

Section 5. The next lemma generalizes the argument given in the proof of Theorem 23 to give a

general method for converting hold-one-out prediction strategies to learning algorithms that solve

the pattern recognition problem.

Lemma 31 Let A be a hold-one-out prediction strategy. Then A can be converted into a learning

strategy B such that for any comparison class H, any `, and any distribution D on X � f0; 1g,

E

s�D

`

(er

D

(B(s)))� er

D

(H) =

1

` + 1

E

(x;y)�D

`+1

�

HL

A

(x;y)� L

H

j

x

(x;y)

�

� er

�

`+1;D

(H);

where E

(x;y)�D

`+1
denotes expectation over x = x

1

; : : :x

`+1

and y = y

1

; : : : ; y

`+1

, each (x

t

; y

t

)

drawn independently at random according to D, 1 � t � ` + 1.

39



Proof of Lemma 31:

The learning strategy B works as follows. For any sequence of examples s = (x

1

; y

1

); : : : ; (x

`

; y

`

)

and any instance x, let ŷ

t

denote the output of A when A is given as input the sequence of

instances x = x

1

; : : : ; x

t�1

; x; x

t

; : : : ; x

`

, the set H

j

x

of experts, and the observed outcomes y =

y

1

; : : : ; y

t�1

; ?; y

t

; : : : ; y

`

, where `?' denotes the location of the missing tth outcome to be predicted.

Now the value of the function h = B(s) on input x is de�ned by the average of the ŷ

t

's, i.e.,

h(x) =

1

`+1

P

`+1

t=1

ŷ

t

.

To show that this strategy B has the desired performance, �rst note the following

E

s�D

`

(er

D

(B(s))) = E

s�D

`

;(x;y)�D

jB(s)(x)� yj

= E

s�D

`

;(x;y)�D

�

�

�

�

�

 

1

` + 1

`+1

X

t=1

ŷ

t

!

� y

�

�

�

�

�

;

(26)

where ŷ

t

is as de�ned in the previous paragraph, and s = (x

1

; y

1

); : : : ; (x

`

; y

`

).

Because j(

1

n

P

n

t=1

p

t

)� cj =

1

n

P

n

t=1

jp

t

� cj for c 2 f0; 1g and 0 � p

t

� 1, it follows that

E

s�D

`
(er

D

(B(s))) = E

s�D

`

;(x;y)�D

1

` + 1

`+1

X

t=1

jŷ

t

� yj

=

1

` + 1

`+1

X

t=1

E

s�D

`

;(x;y)�D

jŷ

t

� yj

=

1

` + 1

`+1

X

t=1

E

(x;y)�D

`+1
jŷ

0

t

� y

t

j;

(27)

where ŷ

0

t

is the output of A when A is given as input the sequence of instances x = x

1

; : : : ; x

`+1

, the

set H

j

x

of experts, and the observed outcomes y = y

1

; : : : ; y

t�1

; ?; y

t+1

; : : : ; y

`+1

, where '?' denotes

the location of the missing outcome to be predicted. Thus, by the de�nition of the hold-one-out

prediction loss

E

s�D

`

(er

D

(B(s))) =

1

` + 1

E

(x;y)�D

`+1

`+1

X

t=1

jŷ

0

t

� y

t

j

=

1

` + 1

E

(x;y)�D

`+1

HL

A

(x;y); (28)

where HL

A

(x;y) denotes the total hold-one-out prediction loss of the strategy A on instances x

and outcomes y, assuming the set of experts used is H

j

x

.

Furthermore, it is clear that

b

er

`;D

(H) = E

(x;y)�D

`

1

`

inf

h2H

`

X

t=1

jh(x

t

)� y

t

j

= E

(x;y)�D

`

1

`

L

H

j

x

(x;y): (29)

It follows from Equations (28), (29) and the de�nition of expected over-�t that

E

s�D

`

(er

D

(B(s)))� er

D

(H)

40



= E

s�D

`
(er

D

(B(s)))�

b

er

`+1;D

(H)� (er

D

(H) �

b

er

`+1;D

(H))

=

1

` + 1

E

(x;y)�D

`+1

HL

A

(x;y)�

1

` + 1

E

(x;y)�D

`+1

L

H

j

x

(x;y)� er

�

`+1;D

(H)

=

1

` + 1

E

(x;y)�D

`+1

�

HL

A

(x;y)� L

H

j

x

(x;y)

�

� er

�

`+1;D

(H)

Finally, we can now complete the

Proof of Theorem 24:

From Theorem 27 and the above lemma, with A being the algorithm DB, it follows that

E

s�D

`

(er

D

(A(s)))� er

D

(H) �

E

(x;y)�D

`+1
[

q

L

H

j

x

(x;y)(

q

ln jH

j

x

j+ 1)]

` + 1

+

E

x

ln jH

j

x

j

(` + 1) ln 2

+

3E

x

q

ln jH

j

x

j+ 1

` + 1

� er

�

`+1;D

(H): (30)

Hence by the Cauchy-Schwarz inequality (applied in the �rst line below) and by Jensen's inequality

(applied in the second line),

E

s�D

`
(er

D

(A(s)))� er

D

(H) �

q

E

(x;y)�D

`+1

L

H

j

x

(x;y)(

q

E

x

ln jH

j

x

j+ 1)

` + 1

+

E

x

ln jH

j

x

j

(` + 1) ln 2

+

3

q

E

x

ln jH

j

x

j+ 1

` + 1

� er

�

`+1;D

(H):

Since T = E

x

ln jH

j

x

j and since Equation (29) implies that

E

(x;y)�D

`+1
(L

H

j

x

(x;y)) = (` + 1)

b

er

`+1;D

(H);

Equation (20) follows. From this, Equation (21) follows by simply noting that

b

er

`+1;D

(H) � er

D

(H).

Note that for sake of simplicity the bounds stated the Theorem 24 are actually weaker than

what we prove in Equation (30).

6 Worst-case Loss Bounds for the Log Loss

It is interesting to relate the min/max analysis, given in Section 3, to results on the problem of

optimal universal sequential coding studied by Shtarkov [Sht75, Sht87].

The problem of sequential coding is similar to the problem studied in this paper, with two major

di�erences:

1. The loss function that is studied in this paper is jp � yj. This loss corresponds to the prob-

ability of making a mistake if making a prediction by 
ipping a random coin whose bias is

p. The study of sequential coding, on the other hand, is interested in the log loss function

�y ln p� (1� y) ln(1� p). This loss function is closely related to the minimal average coding

length that can be achieved by using the given predictions (see Rissanen and Langdon [RL81]).

41



2. The predictions made by the \experts" as de�ned here are not restricted; they can depend

on any information that is available to the experts. The corresponding concept in Shtarkov's

paper is that of a \source." A source is an expert whose prediction at time t depends only

on the previous outcomes: y

1

; : : : ; y

t�1

. We call such experts \simulatable" because their

future predictions can be simulated by feeding them with future outcomes. The predictions

of a simulatable expert can be viewed as a conditional distribution p(y

t

jy

1

; : : : ; y

t�1

). This

means that any simulatable expert can be identi�ed with a distribution over the set of in�nite

binary sequences. Assuming all our experts are simulatable, we denote by P

i

the distribution

associated with expert i. Similarly, if we �x a prediction algorithm A that combines a �xed

set of experts we can associate with it a distribution P

A

.

It is well known that for the log loss, for any set E of N experts there is a prediction strategy

A such that for any sequence y, L

A

(y) � L

E

(y) � logN; where L

E

(y) is the total log loss of the

best expert for y [Ris86, DMW88, Vov92, HB92, Yam95, KW94].

12

The strategy is just the Bayes

algorithm with uniform prior on the distributions represented by the experts.

A min/max optimal prediction algorithm is known for the case where the experts are simulatable

and `, the number of iterations, is known in advance. This result is given by Shtarkov [Sht87]

(Theorem 1). For completeness, we restate the theorem and its proof here using our terminology.

Theorem 32 (Shtarkov) For each y 2 f0; 1g

`

and each expert E

i

2 E, let P

i

(y) denote the

probability of y under expert E

i

. De�ne the probability of y for the algorithm A by

P

A

(y) =

max

1�i�N

P

i

(y)

P

y

0

2f0;1g

`

max

1�i�N

P

i

(y

0

)

:

Then A minimizes the maximum of the di�erence L

A

(y)�L

E

(y) over all sequences y. Furthermore,

this di�erence is the same for all sequences y:

L

A

(y)� L

E

(y) = log

X

y

0

2f0;1g

`

max

1�i�N

P

i

(y

0

) � logN:

Proof: Since L

A

(y) = � logP

A

(y) and L

E

(y) = � log max

1�i�N

P

i

(y), it follows from the

de�nition of P

A

that

L

A

(y)� L

E

(y) = log

X

y

0

2f0;1g

`

max

1�i�N

P

i

(y

0

)

for all y. Clearly this value is at most logN . Furthermore, A can be interpreted as a Bayes

algorithm for predicting the bits of y under the log loss, where the prior probability of y is given

by

P (y) =

max

1�i�N

P

i

(y)

P

y

0

2f0;1g

`

max

1�i�N

P

i

(y

0

)

:

Since A is Bayes and has the same regret L

A

(y)� L

E

(y) for each y, it follows that A is min/max.

Otherwise there would exist another algorithm A

0

with average regret with respect to this prior

that is less than the Bayes optimal algorithm, which would yield a contradiction.

It is instructive to contrast the simplicity of the algorithms and analysis for log loss to the

relative complexity involved in the analysis of the algorithms in this paper, which aim to minimize

the absolute loss. This suggests that when given the choice, one might be better o� choosing to use

the log loss. However, in many situations there is no such choice because the goal is to minimize

the number of mistakes and not to minimize the length of a coding of the sequence.

12

This inequality holds even if the experts are not simulatable.

42



7 Conclusions

In this paper we prove worst-case loss bounds for on-line learning for the absolute loss, and give

applications in pattern recognition. We bound the additional loss of the algorithm over the loss

of the best expert. Apart from the game-theoretic analysis, our main upper bound is obtained

essentially by tuning an algorithm that was �rst introduced by Vovk (Theorem 15). Other loss

functions for the expert framework are considered in [Vov90, HKW95].

The paper leaves many open problems. Our lower bounds only address the case when a bound

on the length of the sequence of examples is known. We would like to have lower bounds for the

case when the sequence is of unbounded length but the loss of the best expert lies below a bound

that is known to the algorithm. In other words, are there lower bounds that match the upper

bounds of Theorem 15?

For the case when the algorithm has no prior knowledge of the loss of the best expert (Theorem

21), can the constant in front of the square root be lowered and the algorithm be simpli�ed? We

would also like to generalize our upper bounds of Theorem 15 to the case when the set of experts

is in�nite. Assume the expert E

i

has initial weight w

i

and the total weight

P

1

i=1

w

i

of all experts is

one. We would like to get bounds of the following form that hold for arbitrary outcome sequence

y:

L

A

(y) � inf

1�i�1

�

 L

E

i

(y) + c

q

 L

E

i

ln(1=w

i

) + c

0

ln(1=w

i

);

�

where the constants c and c

0

are as low as possible. Weaker bounds that are not in the above form

have been given by Littlestone and Warmuth [LW94].

Our new bounds proven for the PAC model (Section 5) are better that previous bounds but the

algorithms are very complicated. Is the hold-one-out model necessary to prove the bounds given

for the PAC model? Can the same bounds be obtained by simpler algorithms?

The upper bound for the main algorithm P of this paper (Theorem 10) has recently been

generalized by Warmuth and Kivinen [KW94] to the case when the outcomes lie in the interval

[0; 1] instead being restricted to be binary as done in this paper. The new result can be used as a

starting point for generalizing the results for the PAC model to the case when the hypotheses have

range [0,1] instead of f0; 1g.

Acknowledgments

We thank Meir Feder, Yuval Peres, Nick Littlestone and Michael Kearns for helpful suggestions and

discussions of this material. We also thank the two anonymous referees for their valuable comments

on an earlier draft of this paper.

References

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.

Learnability and the Vapnik-Chervonenkis dimension. Journal of the Association for

Computing Machinery, 36(4):929{965, 1989.

[BM93] L. Birge and P. Massart. Rates of convergence for minimum contrast estimators.

Probability Theory and Related Fields, 97:113{150, 1993.

[CBFH

+

93] Nicol�o Cesa-Bianchi, Yoav Freund, David P. Helmbold, David Haussler, Robert E.

Schapire, and Manfred K. Warmuth. How to use expert advice. In Proceedings of the

43



Twenty-Fifth Annual ACM Symposium on the Theory of Computing, pages 382{391,

1993.

[CBFHW96] N. Cesa-Bianchi, Y. Freund, D.P. Helmbold, and M.K. Warmuth. On-line prediction

and conversion strategies. Machine Learning, 1996. To appear.

[Chu94] Thomas H. Chung. Approximate methods for sequential decision making using expert

advice. In Proceedings of the Seventh Annual ACM Conference on Computational

Learning Theory, pages 183{189, 1994.

[Cov65] Thomas M. Cover. Behaviour of sequential predictors of binary sequences. In Trans-

actions of the Fourth Prague Conference on Information Theory, Statistical Decision

Functions, Random Processes, pages 263{272. Publishing House of the Czechoslovak

Academy of Sciences, 1965.

[CS77] T. M. Cover and A. Shanhar. Compound Bayes predictors for sequences with ap-

parent Markov structure. IEEE Transactions on Systems, Man and Cybernetics,

SMC-7(6):421{424, June 1977.

[Daw84] A. P. Dawid. Statistical theory: The prequential approach. Journal of the Royal

Statistical Society, Series A, pages 278{292, 1984.

[Daw91] A. Dawid. Prequential analysis, stochastic complexity and Bayesian inference. In

Bayesian Statistics 4, pages 109{125. Oxford University Press, 1991.

[Dawar] A.P. Dawid. Prequential data analysis. Current Issues in Statistical Inference, to

appear.

[DMW88] Alfredo DeSantis, George Markowski, and Mark N. Wegman. Learning probabilistic

prediction functions. In Proceedings of the 1988 Workshop on Computational Learning

Theory, pages 312{328. Morgan Kaufmann, 1988.

[FFK

+

91] A. Fiat, D. Foster, H. Karlo�, Y. Rabani, Y. Ravid, and S. Vishwanathan. Competi-

tive algorithms for layered graph traversal. In 32nd Annual Symposium on Founda-

tions of Computer Science, pages 288{297, 1991.

[FKL

+

91] A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and N. Young. Competitive

paging algorithms. Journal of Algorithms, 12:685{699, 1991.

[FMG92] M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual sequences.

IEEE Transactions on Information Theory, 38:1258{1270, 1992.

[FRR94] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms. Journal of

Computer and System Sciences, 48(3):410{428, 1994.

[Gal87] Janos Galambos. The Asymptotic Theory of Extreme Oreder Statistics. R. E. Kreiger,

second edition, 1987.

[Han57] James Hannan. Approximation to Bayes risk in repeated play. In Contributions to

the theory of games, volume 3, pages 97{139. Princeton University Press, 1957.

[Hay94] S. Haykin. Neural Networks: a comprehensive foundation. Macmillan, 1994.

44



[HB92] David Haussler and Andrew Barron. How well do Bayes methods work for on-line

prediction of f+1;�1g values? In Proceedings of the Third NEC Symposium on

Computation and Cognition. SIAM, 1992.

[HKLW91] David Haussler, Michael Kearns, Nick Littlestone, and Manfred K. Warmuth. Equiv-

alence of models for polynomial learnability. Information and Computation, 95:129{

161, 1991.

[HKS94] D. Haussler, M. Kearns, and R. Schapire. Bounds on the sample complexity of

Bayesian learning using information theory and the VC dimension. Machine Learning,

14:84{114, 1994.

[HKW95] David Haussler, Jyrki Kivinen, and Manfred K. Warmuth. Tight worst-case loss

bounds for predicting with expert advice. In Computational Learning Theory: Second

European Conference, EuroCOLT '95, pages 69{83. Springer-Verlag, 1995.

[HLW94] David Haussler, Nick Littlestone, and Manfred K. Warmuth. Predicting f0; 1g-

functions on randomly drawn points. Information and Computation, 115(2):248{292,

1994.

[HW95] D. Helmbold and M. K. Warmuth. On weak learning. Journal of Computer and

System Sciences, 50(3):551{573, June 1995.

[KS94] Michael J. Kearns and Robert E. Schapire. E�cient distribution-free learning of

probabilistic concepts. Journal of Computer and System Sciences, 48(3):464{497,

1994.

[KSS94] Michael J. Kearns, Robert E. Schapire, and Linda M. Sellie. Toward e�cient agnostic

learning. Machine Learning, 17:115{141, 1994.

[KW94] Jyrki Kivinen and Manfred K. Warmuth. Using experts for predicting continuous out-

comes. In Computational Learning Theory: EuroCOLT '93, pages 109{120. Springer-

Verlag, 1994.

[Lit89] N. Littlestone. From on-line to batch learning. In Proceedings of the Second Annual

Workshop on Computational Learning Theory, pages 269{284. Morgan Kaufmann,

1989.

[LLW95] Nicholas Littlestone, Philip M. Long, and Manfred K. Warmuth. On-line learning of

linear functions. Computational Complexity, 5(1):1{23, 1995.

[LW94] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information

and Computation, 108(2):212{261, 1994.

[MF93] N. Merhav and M. Feder. Universal schemes for sequential decision from individual

data sequences. IEEE Transactions on Information Theory, 39(4):1280{1292, 1993.

[Ris78] Jorma Rissanen. Modeling by shortest data description. Automatica, 14:465{471,

1978.

[Ris86] Jorma Rissanen. Stochastic complexity and modeling. The Annals of Statistics,

14(3):1080{1100, 1986.

45



[RL81] Jorma Rissanen and Glen G. Langdon, Jr. Universal modeling and coding. IEEE

Transactions on Information Theory, IT-27(1):12{23, January 1981.

[Sht75] Yu. M. Shtarkov. Coding of descrete sources with unknown statistics. In I. Csiszar

and P. Elias, editors, Topics in Information Theory, pages 559{574. North Holland,

Amsterdam, 1975.

[Sht87] Yu. M. Shtarkov. Universal sequential coding of single messages. Problems of Infor-

mation Transmission, 23:175{186, July-September 1987.

[SST92] H. S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning from

examples. Physical Review A, 45(8):6056{6091, 1992.

[Sto77] C. J. Stone. Cross-validation: a review. Math. Operationforsch. Statist. Ser. Statist.,

9:127{139, 1977.

[STS90] H. Sompolinsky, N. Tishby, and H.S. Seung. Learning from examples in large neural

networks. Physical Review Letters, 65:1683{1686, 1990.

[Tal94] M. Talagrand. Sharper bounds for Gaussian and empirical processes. Annals of

Probability, 22(1):28{76, 1994.

[Val84] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134{

42, 1984.

[Vap82] V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag,

1982.

[Vap92] V. Vapnik. Principles of risk minimization for learning theory. In John E. Moody,

Steve J. Hanson, and Richard P. Lippman, editors, Advances in Neural Information

Processing Systems 4. Morgan Kaufmann, 1992.

[Vov90] Volodimir G. Vovk. Aggregating strategies. In Proceedings of the Third Annual

Workshop on Computational Learning Theory, pages 371{383. Morgan Kaufmann,

1990.

[Vov92] V. G. Vovk. Universal forcasting algorithms. Information and Computation,

96(2):245{277, Feb. 1992.

[Vov93] V. G. Vovk. A logic of probability, with application to the foundations of statistics.

Journal of the Royal Statistical Society Series B-Methodological, 55(2):317{351, 1993.

[Yam95] Kenji Yamanishi. A loss bound model for on-line stochastic prediction algorithms.

Information and Computation, 119(1):39{54, 1995.

A Proof of Lemma 6

The proof is based on the fact that the distribution of A

`;N

, after proper rescaling and shifting,

converges to a limit distribution. However, as convergence of the distributions does not imply

convergence of the expected values, we need to use a slightly more involved argument.

46



Let Y

`;i

be a normalized version of S

`;i

, with mean 0 and variance 1

Y

`;i

=

S

`;i

�

`

2

p

`=2

; (31)

and let B

`;N

be

B

`;N

=

min

1�i�N

fY

`;i

g

p

2 lnN

=

A

`;N

� `=2

p

(`=2) lnN

: (32)

It su�ces to show that 8� > 0 9N

0

8N > N

0

9`

0

8` � `

0

E(B

`;N

) � �1 + � : (33)

In order to prove this claim, we upper bound the expectation by a sum as follows:

E(B

`;N

) � P (B

`;N

� �1 + �=3)(�1 + �=3) +P (�1 + �=3 < B

`;N

� 0)0 +

Z

1

0

P (B

`;N

� c)dc : (34)

We start by bounding the third term in (34). In general, we have that

P (B

`;N

� c) =

N

Y

i=1

P

 

S

`;i

� `=2

p

`(lnN)=2

� c

!

; (35)

and as the expected value of S

`;i

is `=2, we can bound the RHS using Hoe�ding's bound:

P

 

S

`;i

� `=2

p

`(lnN)=2

� c

!

= P

 

S

`;i

� `=2 + `

 

c

p

(lnN)=2

p

`

!!

� exp

0

@

�2`

 

c

p

(lnN)=2

p

`

!

2

1

A

= exp(�c

2

lnN) :

(36)

Plugging this back into the integral, we get

Z

1

0

P (B

`;N

� c)dc �

Z

1

0

exp(�c

2

N lnN)dc =

1

2

r

�

N lnN

� �=3 (37)

for su�ciently large N .

It remains to bound the �rst term in Equation (34). Let c be an arbitrary real number. From

the central limit theorem it follows that

P (Y

`;i

� c)

`!1

�! P (�

i

� c) ; (38)

where �

i

are independent random variables from the normal distribution N (0; 1). From this we

get that

P

�

p

2 lnNB

`;N

� c

�

= P

�

min

1�i�N

Y

`;i

� c

�

= 1�

N

Y

i=1

P (Y

`;i

> c)

`!1

�! 1�

N

Y

i=1

P (�

i

> c) = P (�

N

� c) ;

(39)

where �

N

= min

1�i�N

f�

i

g. On the other hand, asymptotic analysis of the extreme order statistics

of the normal distribution (see Galambos [Gal87] Section 2.3.2, equations (59,60)) shows that

P

�

�

N

� a

N

b

N

� c

�

N!1

�! 1� exp(�e

c

) ; (40)

47



where

a

N

= �

p

2 lnN +

ln lnN + ln 4�

2

p

2 lnN

and b

N

=

1

p

2 lnN

: (41)

Combining Equations (39) and (40), we get that

lim

N!1

lim

`!1

P

�

B

`;N

>

cb

N

+ a

N

p

2 lnN

�

= exp(�e

c

) : (42)

We now �x c su�ciently large so that exp(�e

c

) < �=3. For N and ` su�ciently large we have that

P

�

B

`;N

>

cb

N

+ a

N

p

2 lnN

�

< �=3 : (43)

Plugging in the de�nitions of a

N

and b

N

, we get that

P

�

B

`;N

>

c

2 lnN

� 1 +

1=2(ln lnN + ln 4�)

2 lnN

�

< �=3 : (44)

Choosing N large enough we �nally get that

P (B

`;N

> �1 + �=3) < �=3 ; (45)

which upper bounds the �rst term in Equation (34) by (1� �=3)(�1 + �=3) < �1 + (2=3)�. This,

combined with the above bound for the third term, completes the proof.

B Proof of Lemma 13

Recall that z > 0 or z = 1 and thus g(z) =

1

1+2z+z

2

= ln 2

2 [0; 1). The following inequalities are

equivalent to the lemma.

z

2

� ln(g(z))

2 ln

2

1+g(z)

�

1

2g(z)

+

1

2

0 � (1 +

1

g(z)

) ln

�

2

1 + g(z)

�

� z

2

+ ln(g(z)) :

Since g(0) = 1, the last inequality holds for z = 0. Thus it su�ces to show that the derivative of

the RHS is nonnegative for all z � 0. Taking this derivative we get

�

g

0

(z) ln

�

2

1+g(z)

�

g(z)

2

�

�

1 +

1

g(z)

�

g

0

(z)

1 + g(z)

� 2z +

g

0

(z)

g(z)

which simpli�es to

�

g

0

(z) ln

�

2

1+g(z)

�

g(z)

2

� 2z:

Note that g

0

(z) = �(2 + 2z= ln 2)g(z)

2

, so the derivative is nonnegative whenever

�

2 +

2z

ln 2

�

ln

�

2

1 + g(z)

�

� 2z � 0 (46)

48



We now consider two cases depending on the value of z. In the �rst case, 0 < z �

3 ln2�4 ln

2

2

2 ln2�1

�

:4 and we use the approximation ln(1 + x) � x=(1 + x). With this approximation,

ln

�

2

1 + g(z)

�

= ln

�

1 +

1� g(z)

1 + g(z)

�

�

1� g(z)

2

:

Plugging back into Inequality (46), we see that the derivative is nonnegative whenever

�

2 +

2z

ln 2

�

1� g(z)

2

� 2z � 0:

By multiplying the above with

1

g(z)

we get the following equivalent inequalities:

�

1 +

z

ln 2

�

 

2z +

z

2

ln 2

!

� 2z

 

1 + 2z +

z

2

ln 2

!

� 0

3z

2

ln 2

+

z

3

ln

2

2

� 4z

2

� 2

z

3

ln 2

� 0

3 ln 2� 4 ln

2

2 + z � 2z ln 2 � 0

which holds due to the assumption that z �

3 ln2�4 ln

2

2

2 ln2�1

. Now we assume that z �

3 ln 2�4 ln

2

2

2 ln 2�1

.

Note that

1�g(z)

1+g(z)

is an increasing function which approaches 1 as z ! 1. Furthermore, under

the assumptions of this case, g(z) � (2 ln 2 � 1)

2

=(1 � ln 2) <

1

2

and

1�g(z)

1+g(z)

> 1=3. Thus we can

underestimate ln(1 + x) by interpolating between x = 1=3 and x = 1 (with

1�g(z)

1+g(z)

= x).

ln

�

1 +

1� g(z)

1 + g(z)

�

�

3

2

�

1�

1� g(z)

1 + g(z)

�

ln(4=3) +

3

2

�

1� g(z)

1 + g(z)

�

1

3

�

ln 2

Thus for the values of z considered in this case, the following equivalent form of (46)

ln

�

1 +

1� g(z)

1 + g(z)

�

�

z

1 +

z

ln 2

� 0

holds whenever

3

2

�

1�

1� g(z)

1 + g(z)

�

ln(4=3) +

3

2

�

1� g(z)

1 + g(z)

�

1

3

�

ln 2�

z

1 +

z

ln 2

� 0

3g(z)

1 + g(z)

ln(4=3) +

1� 2g(z)

1 + g(z)

ln 2�

z

1 +

z

ln 2

� 0

(3g(z) ln(4=3) + (1� 2g(z)) ln2)(1 +

z

ln 2

)� z(1 + g(z)) � 0

(3 ln(4=3)� ln 2 + 2z ln 2 + z

2

)(1 +

z

ln 2

)� z(2 + 2z +

z

2

ln 2

) � 0

3 ln(4=3)� ln 2 + 2z ln 2 + z

2

+

3z ln(4=3)

ln 2

� z � 2z � 0

3 ln(4=3)� ln 2 + z(2 ln 2 +

3 ln(4=3)

ln 2

� 3) + z

2

� 0:

Finally, we observe that this polynomial is always positive, obtaining its minimum of about 0.13

when z � 0:18:.

49



C Proof of Theorem 21

First, if L

E

(y) � a

2

lnN then the algorithms �rst guess k

0

is an upper bound on the loss of the

best expert, and by Theorem 15 the loss of P

�

is bounded by at most

L

E

(y) +

q

a

2

(lnN)

2

+

1

2

log

2

N = L

E

(y) + (a+

1

2 ln 2

) lnN;

satisfying the theorem. We proceed with the assumption that L

E

(y) > a

2

lnN .

Let last be the largest iteration number in which a prediction was made by algorithm P

�

. Let

L

last;E

i

be the loss incurred by the expert E

i

while algorithm P

�

is executing iteration number last,

and let L

last;E

be the minimum L

last;E

i

over E

i

2 E . If L

last;E

� k

last

then by Theorem 15 the loss

of algorithm P

�

during iteration number last is at most

L

last;E

+

q

k

last

lnN +

1

2

log

2

N = L

last;E

+

�

ac

last=2

+

1

2 ln 2

�

lnN:

If L

last;E

> k

last

then, as there are no more iterations after last (implying that P

�

makes only

one additional prediction following the last prediction in which the loss of algorithm P

�

is at most

b

last

), the loss of algorithm P

�

during iteration number last is at most

b

last

+ 1 � L

last;E

+

�

ac

last=2

+

1

2 ln 2

�

lnN + 1:

Using the above and the fact that the loss incurred by P

�

during any iteration z is at most

b

z

+ 1, we can bound L

P

�

(y),

L

P

�

(y) � L

last;E

+

�

ac

last=2

+

1

2 ln 2

�

lnN + 1 +

last�1

X

z=0

(b

z

+ 1):

Using Equation (14),

L

P

�

(y) � L

last;E

+

�

ac

last=2

+

1

2 ln 2

�

lnN + 1 +

last�1

X

z=0

(k

z

+ (ac

z=2

+

1

2 ln 2

) lnN + 1)

� L

last;E

+

last�1

X

z=0

k

z

+

last

X

z=0

��

ac

z=2

+

1

2 ln 2

�

lnN + 1

�

:

Lemma 19 implies that L

E

(y), the loss of the best expert, is at least L

last;E

+

P

last�1

z=0

k

z

. Using

this fact,

L

P

�

(y) � L

E

(y) + (last + 1)

�

1 +

lnN

2 ln 2

�

+

last

X

z=0

ac

z=2

lnN: (47)

We now work on the second and third terms separately. We will use the following lemma to

help simplify the second term.

Lemma 33 For all x � 0, ln(1 + x) � 0:805

p

x.

50



Proof: (of lemma) It is slightly easier to show that for all z � 0, ln(1 + z

2

) � 0:805z � 0. The

inequality clearly holds at z = 0 and z = 1. By di�erentiating, we see that the extrema are at

z =

1�

p

1�(0:805)

2

0:805

. Plugging these values in show that both of these (local) extrema are negative,

so ln(1 + z

2

)� 0:805z � 0 for all z � 0.

We return to the proof of the theorem by applying Lemma 20 followed by Lemma 33 to the

second term.

(last + 1)(1 +

lnN

2 ln 2

) � 1 +

lnN

2 ln 2

+ (1 +

lnN

2 ln 2

) log

c

�

1 +

L

E

(y)(c� 1)

a

2

lnN

�

� 1 +

lnN

2 ln 2

+ (1 +

lnN

2 ln 2

)

0:805

ln c

s

L

E

(y)(c� 1)

a

2

lnN

= 1 +

lnN

2 ln 2

+ (1 +

lnN

2 ln 2

)

0:805

p

(c� 1)

a lnN ln c

q

L

E

(y) lnN

= 1 +

lnN

2 ln 2

+ (

0:805

p

(c� 1)

a lnN ln c

+

0:805

p

(c� 1)

a(2 ln 2) ln c

)

q

L

E

(y) lnN:

For the third term of Equation (47) we sum the geometric series and then apply Lemma 20.

last

X

z=0

ac

z=2

lnN = a lnN

p

c

last+1

� 1

p

c� 1

� a lnN

q

c(1 +

L

E

(y)(c�1)

a

2

lnN

)

p

c� 1

�

a lnN

p

c� 1

:

We continue with the approximation

p

1 + x �

p

x + 1=

p

4x and then use the assumption that

L

E

(y) � a

2

lnN .

last

X

z=0

ac

z=2

lnN �

a

p

c lnN

p

c� 1

0

@

s

L

E

(y)(c� 1)

a

2

lnN

+

s

a

2

lnN

4L

E

(y)(c� 1)

1

A

�

a lnN

p

c� 1

�

p

c(c� 1)

p

c� 1

q

L

E

(y) lnN +

a

p

c lnN

2(

p

c� 1)

p

c� 1

�

a lnN

p

c� 1

=

p

c(c� 1)

p

c� 1

q

L

E

(y) lnN � a lnN

2

p

c� 1�

p

c

2(

p

c� 1)

p

c� 1

:

Plugging these results back into (47) yields

L

P

�

(y) � L

E

(y) + 1 +

lnN

2 ln 2

�

a lnN(2

p

c� 1�

p

c)

2(

p

c� 1)

p

c� 1

+

 

0:805

p

c� 1

a lnN ln c

+

0:805

p

c� 1

a(2 ln 2) ln c

+

p

c(c� 1)

p

c� 1

!

q

L

E

(y) lnN:

We use � to denote the golden ratio,

1+

p

5

2

, and recall that �

2

� 1 = �. The

p

c(c� 1)=(

p

c � 1)

term is minimized at c = �

2

, where it is �

3=2

=(�� 1), or about 3.33 (less than 3.3302).

With c set to �

2

, the factor in front of the

p

L

E

(y) lnN term is less than

 

�

3=2

(�� 1)

+

0:805

p

�

4a ln 2 ln�

+

0:805

p

�

2a lnN ln �

!

:

51



We now turn our attention to the coe�cient of the lnN term together with the \+1". For c = �

2

,

this factor is

1

lnN

+

1

2 ln 2

�

a(2�

p

�)

2(�� 1)

and is less than

1

2 ln2

for all a � 2(�� 1)=((2�

p

�) lnN), completing the proof of the theorem.

52


