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Abstract. In an earlier paper, we introduced a new “boosting”
algorithm called AdaBoost which, theoretically, can be used to
significantly reduce the error of any learning algorithm that con-
sistently generates classifiers whose performance is a little better
than random guessing. We also introduced the related notion of a
“pseudo-loss” which is a method for forcing a learning algorithm
of multi-label concepts to concentrate on the labels that are hardest
to discriminate. In this paper, we describe experiments we carried
out to assess how well AdaBoost with and without pseudo-loss,
performs on real learning problems.

We performed two sets of experiments. The first set compared
boosting to Breiman’s “bagging” method when used to aggregate
various classifiers (including decision trees and single attribute-
value tests). We compared the performance of the two methods
on a collection of machine-learning benchmarks. In the second
set of experiments, we studied in more detail the performance of
boosting using a nearest-neighbor classifier on an OCR problem.

1 INTRODUCTION
“Boosting” is a general method for improving the perfor-
mance of any learning algorithm. In theory, boostingcan be
used to significantly reduce the error of any “weak” learning
algorithm that consistently generates classifiers which need
only be a little bit better than random guessing. Despite
the potential benefits of boosting promised by the theoret-
ical results, the true practical value of boosting can only
be assessed by testing the method on real machine learning
problems. In this paper, we present such an experimental
assessment of a new boosting algorithm called AdaBoost.

Boosting works by repeatedly running a given weak1

learning algorithm on various distributions over the train-
ing data, and then combining the classifiers produced by
the weak learner into a single composite classifier. The
first provably effective boosting algorithms were presented
by Schapire [20] and Freund [9]. More recently, we de-
scribed and analyzed AdaBoost, and we argued that this
new boosting algorithm has certain properties which make
it more practical and easier to implement than its prede-
cessors [10]. This algorithm, which we used in all our
experiments, is described in detail in Section 2.
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1We use the term “weak” learning algorithm, even though, in
practice, boosting might be combined with a quite strong learning
algorithm such as C4.5.

This paper describes two distinct sets of experiments.
In the first set of experiments, described in Section 3, we
compared boosting to “bagging,” a method described by
Breiman [1] which works in the same general fashion (i.e.,
by repeatedly rerunning a given weak learning algorithm,
and combining the computed classifiers), but which con-
structs each distribution in a simpler manner. (Details given
below.) We compared boosting with bagging because both
methods work by combining many classifiers. This com-
parison allows us to separate out the effect of modifying
the distribution on each round (which is done differently by
each algorithm) from the effect of voting multipleclassifiers
(which is done the same by each).

In our experiments, we compared boosting to bagging
using a number of different weak learning algorithms of
varying levels of sophistication. These include: (1) an
algorithm that searches for very simple prediction rules
which test on a single attribute (similar to Holte’s very sim-
ple classification rules [14]); (2) an algorithm that searches
for a single good decision rule that tests on a conjunction
of attribute tests (similar in flavor to the rule-formation
part of Cohen’s RIPPER algorithm [3] and Fürnkranz and
Widmer’s IREP algorithm [11]); and (3) Quinlan’s C4.5
decision-tree algorithm [18]. We tested these algorithms on
a collection of 27 benchmark learning problems taken from
the UCI repository.

The main conclusion of our experiments is that boost-
ing performs significantly and uniformly better than bag-
ging when the weak learning algorithm generates fairly
simple classifiers (algorithms (1) and (2) above). When
combined with C4.5, boosting still seems to outperform
bagging slightly, but the results are less compelling.

We also found that boosting can be used with very sim-
ple rules (algorithm (1)) to construct classifiers that are quite
good relative, say, to C4.5. Kearns and Mansour [16] argue
that C4.5 can itself be viewed as a kind of boosting algo-
rithm, so a comparison of AdaBoost and C4.5 can be seen
as a comparison of two competing boostingalgorithms. See
Dietterich, Kearns and Mansour’s paper [4] for more detail
on this point.

In the second set of experiments, we test the perfor-
mance of boosting on a nearest neighbor classifier for hand-
written digit recognition. In this case the weak learning
algorithm is very simple, and this lets us gain some insight
into the interaction between the boosting algorithm and the



nearest neighbor classifier. We show that the boosting al-
gorithm is an effective way for finding a small subset of
prototypes that performs almost as well as the complete set.
We also show that it compares favorably to the standard
method of Condensed Nearest Neighbor [13] in terms of its
test error.

There seem to be two separate reasons for the improve-
ment in performance that is achieved by boosting. The first
and better understood effect of boosting is that it generates a
hypothesis whose error on the training set is small by com-
bining many hypotheses whose error may be large (but still
better than random guessing). It seems that boostingmay be
helpful on learning problems having either of the following
two properties. The first property, which holds for many
real-world problems, is that the observed examples tend to
have varying degrees of hardness. For such problems, the
boosting algorithm tends to generate distributions that con-
centrate on the harder examples, thus challenging the weak
learning algorithm to perform well on these harder parts of
the sample space. The second property is that the learning
algorithm be sensitive to changes in the training examples
so that significantly different hypotheses are generated for
different training sets. In this sense, boosting is similar to
Breiman’s bagging [1] which performs best when the weak
learner exhibits such “unstable” behavior. However, unlike
bagging, boosting tries actively to force the weak learning
algorithm to change its hypotheses by changing the distri-
bution over the training examples as a function of the errors
made by previously generated hypotheses.

The second effect of boosting has to do with variance re-
duction. Intuitively, taking a weighted majority over many
hypotheses, all of which were trained on different samples
taken out of the same training set, has the effect of re-
ducing the random variability of the combined hypothesis.
Thus, like bagging, boosting may have the effect of produc-
ing a combined hypothesis whose variance is significantly
lower than those produced by the weak learner. However,
unlike bagging, boosting may also reduce the bias of the
learning algorithm, as discussed above. (See Kong and Di-
etterich [17] for further discussion of the bias and variance
reducing effects of voting multiple hypotheses, as well as
Breiman’s [2] very recent work comparing boosting and
bagging in terms of their effects on bias and variance.) In
our first set of experiments, we compare boosting and bag-
ging, and try to use that comparison to separate between the
bias and variance reducing effects of boosting.

Previous work. Drucker, Schapire and Simard [8, 7]
performed the first experiments using a boosting algorithm.
They used Schapire’s [20] original boosting algorithm com-
bined with a neural net for an OCR problem. Follow-
up comparisons to other ensemble methods were done by
Drucker et al. [6]. More recently, Drucker and Cortes [5]
used AdaBoost with a decision-tree algorithm for an OCR
task. Jackson and Craven [15] used AdaBoost to learn
classifiers represented by sparse perceptrons, and tested the
algorithm on a set of benchmarks. Finally, Quinlan [19]
recently conducted an independent comparison of boosting
and bagging combined with C4.5 on a collection of UCI
benchmarks.

Algorithm AdaBoost.M1
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Figure 1: The algorithm AdaBoost.M1.

2 THE BOOSTING ALGORITHM

In this section, we describe our boosting algorithm, called
AdaBoost. See our earlier paper [10] for more details about
the algorithm and its theoretical properties.

We describe two versions of the algorithm which we
denote AdaBoost.M1 and AdaBoost.M2. The two ver-
sions are equivalent for binary classification problems and
differ only in their handling of problems with more than
two classes.

2.1 ADABOOST.M1

We begin with the simpler version, AdaBoost.M1. The
boosting algorithm takes as input a training set of m exam-
ples S = h(x1; y1); : : : ; (xm; ym)i where x

i

is an instance
drawn from some space X and represented in some man-
ner (typically, a vector of attribute values), and y

i

2 Y is
the class label associated with x

i

. In this paper, we al-
ways assume that the set of possible labels Y is of finite
cardinality k.

In addition, the boosting algorithmhas access to another
unspecified learning algorithm, called the weak learning
algorithm, which is denoted generically as WeakLearn.
The boosting algorithm calls WeakLearn repeatedly in
a series of rounds. On round t, the booster provides
WeakLearn with a distribution D

t

over the training set
S. In response, WeakLearn computes a classifier or hy-
pothesis h

t

: X ! Y which should correctly classify
a fraction of the training set that has large probability
with respect to D

t

. That is, the weak learner’s goal is
to find a hypothesis h

t

which minimizes the (training) error
�

t

= Pr
i�D

t

�

h

t

(x

i

) 6= y

i

�

. Note that this error is measured
with respect to the distributionD

t

that was provided to the
weak learner. This process continues for T rounds, and, at
last, the booster combines the weak hypotheses h1; : : : ; hT
into a single final hypothesis h

�n

.
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Algorithm AdaBoost.M2
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Figure 2: The algorithm AdaBoost.M2.

Still unspecified are: (1) the manner in which D

t

is
computed on each round, and (2) how h

�n

is computed.
Different boosting schemes answer these two questions in
different ways. AdaBoost.M1 uses the simple rule shown
in Figure 1. The initial distributionD1 is uniform over S so
D1(i) = 1=m for all i. To compute distributionD

t+1 from
D

t

and the last weak hypothesis h
t

, we multiply the weight
of example i by some number �

t

2 [0; 1) if h
t

classifies x
i

correctly, and otherwise the weight is left unchanged. The
weights are then renormalized by dividing by the normal-
ization constant Z

t

. Effectively, “easy” examples that are
correctly classified by many of the previous weak hypothe-
ses get lower weight, and “hard” examples which tend often
to be misclassified get higher weight. Thus, AdaBoost fo-
cuses the most weight on the examples which seem to be
hardest for WeakLearn.

The number �
t

is computed as shown in the figure as a
function of �

t

. The final hypothesis h
�n

is a weighted vote
(i.e., a weighted linear threshold) of the weak hypotheses.
That is, for a given instance x, h

�n

outputs the label y that
maximizes the sum of the weights of the weak hypotheses
predicting that label. The weight of hypothesish

t

is defined
to be log(1=�

t

) so that greater weight is given to hypotheses
with lower error.

The important theoretical propertyabout AdaBoost.M1
is stated in the following theorem. This theorem shows that
if the weak hypotheses consistently have error only slightly
better than 1=2, then the training error of the final hypothesis
h

�n

drops to zero exponentially fast. For binary classifi-
cation problems, this means that the weak hypotheses need
be only slightly better than random.

Theorem 1 ([10]) Suppose the weak learning algorithm
WeakLearn, when called by AdaBoost.M1, generates hy-
potheses with errors �1; : : : ; �T , where �

t

is as defined in
Figure 1. Assume each �
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� 1=2, and let 
t
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t

.

Then the following upper bound holds on the error of the
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Theorem 1 implies that the training error of the final hy-
pothesis generated by AdaBoost.M1 is small. This does
not necessarily imply that the test error is small. However,
if the weak hypotheses are “simple” and T “not too large,”
then the difference between the training and test errors can
also be theoretically bounded (see our earlier paper [10] for
more on this subject).

The experiments in this paper indicate that the theoreti-
cal bound on the training error is often weak, but generally
correct qualitatively. However, the test error tends to be
much better than the theory would suggest, indicating a
clear defect in our theoretical understanding.

The main disadvantage of AdaBoost.M1 is that it is
unable to handle weak hypotheses with error greater than
1=2. The expected error of a hypothesis which randomly
guesses the label is 1 � 1=k, where k is the number of
possible labels. Thus, for k = 2, the weak hypotheses need
to be just slightly better than random guessing, but when
k > 2, the requirement that the error be less than 1=2 is
quite strong and may often be hard to meet.

2.2 ADABOOST.M2

The second version of AdaBoost attempts to overcome
this difficulty by extending the communication between the
boosting algorithm and the weak learner. First, we allow
the weak learner to generate more expressive hypotheses,
which, rather than identifying a single label in Y , instead
choose a set of “plausible” labels. This may often be easier
than choosing just one label. For instance, in an OCR
setting, it may be hard to tell if a particular image is “7”
or a “9”, but easy to eliminate all of the other possibilities.
In this case, rather than choosing between 7 and 9, the
hypothesis may output the set f7; 9g indicating that both
labels are plausible.

We also allow the weak learner to indicate a “degree of
plausibility.” Thus, each weak hypothesis outputs a vector
[0; 1]k, where the components with values close to 1 or
0 correspond to those labels considered to be plausible or
implausible, respectively. Note that this vector of values is
not a probability vector, i.e., the components need not sum
to one.2

While we give the weak learning algorithm more ex-
pressive power, we also place a more complex requirement
on the performance of the weak hypotheses. Rather than
using the usual prediction error, we ask that the weak hy-
potheses do well with respect to a more sophisticated error
measure that we call the pseudo-loss. Unlike ordinary error
which is computed with respect to a distributionover exam-
ples, pseudo-loss is computed with respect to a distribution

2We deliberately use the term “plausible” rather than “prob-
able” to emphasize the fact that these numbers should not be
interpreted as the probability of a given label.
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over the set of all pairs of examples and incorrect labels.
By manipulating this distribution, the boosting algorithm
can focus the weak learner not only on hard-to-classify ex-
amples, but more specifically, on the incorrect labels that
are hardest to discriminate. We will see that the boosting
algorithm AdaBoost.M2, which is based on these ideas,
achieves boosting if each weak hypothesis has pseudo-loss
slightly better than random guessing.

More formally, a mislabel is a pair (i; y) where i is
the index of a training example and y is an incorrect label
associated with example i. Let B be the set of all misla-
bels: B = f(i; y) : i 2 f1; : : : ;mg; y 6= y

i

g: A mislabel
distribution is a distribution defined over the set B of all
mislabels.

On each round t of boosting, AdaBoost.M2 (Figure 2)
supplies the weak learner with a mislabel distribution D

t

.
In response, the weak learner computes a hypothesis h

t

of
the form h

t

: X � Y ! [0; 1]. There is no restriction on
P

y

h

t

(x; y). In particular, the prediction vector does not
have to define a probability distribution.

Intuitively, we interpret each mislabel (i; y) as repre-
senting a binary question of the form: “Do you predict
that the label associated with example x

i

is y
i

(the correct
label) or y (one of the incorrect labels)?” With this in-
terpretation, the weight D

t

(i; y) assigned to this mislabel
represents the importance of distinguishing incorrect label
y on example x

i

.
A weak hypothesish
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is then interpreted in the following
manner. If h
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; y

i

) = 1 and h
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; y) = 0, then h
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, not y (since h
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to be “plausible” and y “implausible”). Similarly,
ifh
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) = 0 andh
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; y) = 1, thenh
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has (incorrectly)
made the opposite prediction. If h
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; y

i

) = h
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(x

i

; y),
then h

t

’s prediction is taken to be a random guess. (Values
for h

t

in (0; 1) are interpreted probabilistically.)
This interpretation leads us to define the pseudo-loss of

hypothesis h
t

with respect to mislabel distribution D
t

by
the formula
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Space limitations prevent us from giving a complete deriva-
tion of this formula which is explained in detail in our earlier
paper [10]. It can be verified though that the pseudo-loss
is minimized when correct labels y

i

are assigned the value
1 and incorrect labels y 6= y

i

assigned the value 0. Fur-
ther, note that pseudo-loss 1=2 is trivially achieved by any
constant-valued hypothesis h

t

.
The weak learner’s goal is to find a weak hypothesis

h

t

with small pseudo-loss. Thus, standard “off-the-shelf”
learning algorithms may need some modification to be used
in this manner, although this modification is often straight-
forward. After receiving h

t

, the mislabel distribution is up-
dated using a rule similar to the one used in AdaBoost.M1.
The final hypothesis h

�n

outputs, for a given instance x,
the label y that maximizes a weighted average of the weak
hypothesis values h

t

(x; y).
The following theorem gives a bound on the training er-

ror of the final hypothesis. Note that this theorem requires

only that the weak hypotheses have pseudo-loss less than
1=2, i.e., only slightly better than a trivial (constant-valued)
hypothesis, regardless of the number of classes. Also, al-
though the weak hypothesesh

t

are evaluated with respect to
the pseudo-loss, we of course evaluate the final hypothesis
h

�n

using the ordinary error measure.

Theorem 2 ([10]) Suppose the weak learning algorithm
WeakLearn, when called by AdaBoost.M2 generates hy-
potheses with pseudo-losses �1; : : : ; �T , where �

t

is as de-
fined in Figure 2. Let 

t

= 1=2 � �

t

. Then the following
upper bound holds on the error of the final hypothesis hfin:
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where k is the number of classes.

3 BOOSTING AND BAGGING

In this section, we describe our experiments comparing
boosting and bagging on the UCI benchmarks.

We first mention briefly a small implementation issue:
Many learning algorithms can be modified to handle ex-
amples that are weighted by a distribution such as the one
created by the boosting algorithm. When this is possi-
ble, the booster’s distributionD

t

is supplied directly to the
weak learning algorithm, a method we call boosting by
reweighting. However, some learning algorithms require
an unweighted set of examples. For such a weak learn-
ing algorithm, we instead choose a set of examples from S

independently at random according to the distribution D
t

with replacement. The number of examples to be chosen
on each round is a matter of discretion; in our experiments,
we chose m examples on each round, where m is the size
of the original training set S. We refer to this method as
boosting by resampling.

Boosting by resampling is also possible when using the
pseudo-loss. In this case, a set of mislabels are chosen from
the set B of all mislabels with replacement according to the
given distributionD

t

. Such a procedure is consistent with
the interpretation of mislabels discussed in Section 2.2. In
our experiments, we chose a sample of size jBj = m(k�1)
on each round when using the resampling method.

3.1 THE WEAK LEARNING ALGORITHMS

As mentioned in the introduction,we used three weak learn-
ing algorithms in these experiments. In all cases, the exam-
ples are described by a vector of values which corresponds
to a fixed set of features or attributes. These values may
be discrete or continuous. Some of the examples may have
missing values. All three of the weak learners build hy-
potheses which classify examples by repeatedly testing the
values of chosen attributes.

The first and simplest weak learner, which we call
FindAttrTest, searches for the single attribute-value test
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# examples # # attributes missing
name train test classes disc. cont. values

soybean-small 47 - 4 35 - -
labor 57 - 2 8 8 �

promoters 106 - 2 57 - -
iris 150 - 3 - 4 -

hepatitis 155 - 2 13 6 �

sonar 208 - 2 - 60 -
glass 214 - 7 - 9 -
audiology.stand 226 - 24 69 - �

cleve 303 - 2 7 6 �

soybean-large 307 376 19 35 - �

ionosphere 351 - 2 - 34 -
house-votes-84 435 - 2 16 - �

votes1 435 - 2 15 - �

crx 690 - 2 9 6 �

breast-cancer-w 699 - 2 - 9 �

pima-indians-di 768 - 2 - 8 -

vehicle 846 - 4 - 18 -
vowel 528 462 11 - 10 -
german 1000 - 2 13 7 -
segmentation 2310 - 7 - 19 -

hypothyroid 3163 - 2 18 7 �

sick-euthyroid 3163 - 2 18 7 �

splice 3190 - 3 60 - -
kr-vs-kp 3196 - 2 36 - -

satimage 4435 2000 6 - 36 -
agaricus-lepiot 8124 - 2 22 - -
letter-recognit 16000 4000 26 - 16 -

Table 1: The benchmark machine learning problems used in the
experiments.

with minimum error (or pseudo-loss) on the training set.
More precisely, FindAttrTest computes a classifier which
is defined by an attribute a, a value v and three predictions
p0, p1 and p?. This classifier classifies a new example x

as follows: if the value of attribute a is missing on x, then
predict p?; if attribute a is discrete and its value on example
x is equal to v, or if attribute a is continuous and its value
on x is at most v, then predict p0; otherwise predict p1. If
using ordinary error (AdaBoost.M1), these “predictions”
p0, p1, p? would be simple classifications; for pseudo-loss,
the “predictions” would be vectors in [0; 1]k (where k is the
number of classes).

The algorithm FindAttrTest searches exhaustively for
the classifier of the form given above with minimum error or
pseudo-loss with respect to the distribution provided by the
booster. In other words, all possible values ofa, v, p0, p1 and
p? are considered. With some preprocessing, this search can
be carried out for the error-based implementation inO(nm)

time, where n is the number of attributes andm the number
of examples. As is typical, the pseudo-loss implementation
adds a factor of O(k) where k is the number of class labels.

For this algorithm, we used boosting with reweighting.
The second weak learner does a somewhat more sophis-

ticated search for a decision rule that tests on a conjunction
of attribute-value tests. We sketch the main ideas of this
algorithm, which we call FindDecRule, but omit some of
the finer details for lack of space. These details will be
provided in the full paper.

First, the algorithm requires an unweighted training set,
so we use the resampling version of boosting. The given
training set is randomly divided into a growing set using
70% of the data, and a pruning set with the remaining 30%.
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Figure 3: Comparison of using pseudo-loss versus ordinary error
on multi-class problems for boosting and bagging.

In the first phase, the growing set is used to grow a list of
attribute-value tests. Each test compares an attribute a to a
value v, similar to the tests used by FindAttrTest. We use
an entropy-based potential function to guide the growth of
the list of tests. The list is initially empty, and one test is
added at a time, each time choosing the test that will cause
the greatest drop in potential. After the test is chosen, only
one branch is expanded, namely, the branch with the highest
remaining potential. The list continues to be grown in this
fashion until no test remains which will further reduce the
potential.

In the second phase, the list is pruned by selecting the
prefix of the list with minimum error (or pseudo-loss) on
the pruning set.

The third weak learner is Quinlan’s C4.5 decision-tree
algorithm [18]. We used all the default options with pruning
turned on. Since C4.5 expects an unweighted training sam-
ple, we used resampling. Also, we did not attempt to use
AdaBoost.M2 since C4.5 is designed to minimize error,
not pseudo-loss. Furthermore, we did not expect pseudo-
loss to be helpful when using a weak learning algorithm as
strong as C4.5, since such an algorithm will usually be able
to find a hypothesis with error less than 1=2.

3.2 BAGGING

We compared boosting to Breiman’s [1] “bootstrap aggre-
gating” or “bagging” method for training and combining
multiple copies of a learning algorithm. Briefly, the method
works by training each copy of the algorithm on a bootstrap
sample, i.e., a sample of sizem chosen uniformly at random
with replacement from the original training set S (of size
m). The multiple hypotheses that are computed are then
combined using simple voting; that is, the final composite
hypothesis classifies an example x to the class most often
assigned by the underlying “weak” hypotheses. See his
paper for more details. The method can be quite effective,
especially, according to Breiman, for “unstable” learning
algorithms for which a small change in the data effects a
large change in the computed hypothesis.

In order to compare AdaBoost.M2, which uses pseudo-
loss, to bagging, we also extended bagging in a natural
way for use with a weak learning algorithm that minimizes
pseudo-loss rather than ordinary error. As described in
Section 2.2, such a weak learning algorithm expects to be
provided with a distribution over the set B of all mislabels.
On each round of bagging, we construct this distribution
using the bootstrap method; that is, we select jBj mislabels
from B (chosen uniformly at random with replacement),

5



0 20 40 60 80

boosting

0

20

40

60

80

ba
gg

in
g

FindAttrTest

0 20 40 60 80
0

20

40

60

80

FindDecRule

0 5 10 15 20 25 30
0

5

10

15

20

25

30

C4.5

Figure 4: Comparison of boosting and bagging for each of the
weak learners.

and assign each mislabel weight 1=jBj times the number of
times it was chosen. The hypotheses h

t

computed in this
manner are then combined using voting in a natural manner;
namely, given x, the combined hypothesis outputs the label
y which maximizes

P

t

h

t

(x; y).
For either error or pseudo-loss, the differences between

bagging and boosting can be summarized as follows: (1)
bagging always uses resampling rather than reweighting; (2)
bagging does not modify the distribution over examples or
mislabels, but instead always uses the uniform distribution;
and (3) in forming the final hypothesis, bagging gives equal
weight to each of the weak hypotheses.

3.3 THE EXPERIMENTS

We conducted our experiments on a collection of machine
learning datasets available from the repository at University
of California at Irvine.3 A summary of some of the proper-
ties of these datasets is given in Table 1. Some datasets are
provided with a test set. For these, we reran each algorithm
20 times (since some of the algorithms are randomized),
and averaged the results. For datasets with no provided test
set, we used 10-fold cross validation, and averaged the re-
sults over 10 runs (for a total of 100 runs of each algorithm
on each dataset).

In all our experiments, we set the number of rounds of
boosting or bagging to be T = 100.

3.4 RESULTS AND DISCUSSION

The results of our experiments are shown in Table 2.
The figures indicate test error rate averaged over mul-
tiple runs of each algorithm. Columns indicate which
weak learning algorithm was used, and whether pseudo-
loss (AdaBoost.M2) or error (AdaBoost.M1) was used.
Note that pseudo-loss was not used on any two-class prob-
lems since the resulting algorithm would be identical to the
corresponding error-based algorithm. Columns labeled “–”
indicate that the weak learning algorithm was used by itself
(with no boosting or bagging). Columns using boosting or
bagging are marked “boost” and “bag,” respectively.

One of our goals in carrying out these experiments was
to determine if boosting using pseudo-loss (rather than er-
ror) is worthwhile. Figure 3 shows how the different al-
gorithms performed on each of the many-class (k > 2)
problems using pseudo-loss versus error. Each point in the
scatter plot represents the error achieved by the two compet-
ing algorithms on a given benchmark, so there is one point

3URL “http://www.ics.uci.edu/˜mlearn/MLRepository.html”
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Figure 5: Comparison of C4.5 versus various other boosting and
bagging methods.

for each benchmark. These experiments indicate that boost-
ing using pseudo-loss clearly outperforms boosting using
error. Using pseudo-loss did dramatically better than error
on every non-binary problem (except it did slightly worse
on “iris” with three classes). Because AdaBoost.M2 did
so much better than AdaBoost.M1, we will only discuss
AdaBoost.M2 henceforth.

As the figure shows, using pseudo-loss with bagging
gave mixed results in comparison to ordinary error. Over-
all, pseudo-loss gave better results, but occasionally, using
pseudo-loss hurt considerably.

Figure 4 shows similar scatterplots comparing the per-
formance of boosting and bagging for all the benchmarks
and all three weak learner. For boosting, we plotted the er-
ror rate achieved using pseudo-loss. To present bagging in
the best possible light, we used the error rate achieved using
either error or pseudo-loss, whichever gave the better result
on that particular benchmark. (For the binary problems,
and experiments with C4.5, only error was used.)

For the simpler weak learning algorithms (FindAttr-
Test and FindDecRule), boosting did significantly and uni-
formly better than bagging. The boosting error rate was
worse than the bagging error rate (using either pseudo-loss
or error) on a very small number of benchmark problems,
and on these, the difference in performance was quite small.
On average, for FindAttrTest, boosting improved the error
rate over using FindAttrTest alone by 55.2%, compared to
bagging which gave an improvement of only 11.0% using
pseudo-loss or 8.4% using error. For FindDecRule, boost-
ing improved the error rate by 53.0%, bagging by only
18.8% using pseudo-loss, 13.1% using error.

When using C4.5 as the weak learning algorithm, boost-
ing and bagging seem more evenly matched, although
boosting still seems to have a slight advantage. On av-
erage, boosting improved the error rate by 24.8%, bagging
by 20.0%. Boosting beat bagging by more than 2% on 6 of
the benchmarks, while bagging did not beat boostingby this
amount on any benchmark. For the remaining 20 bench-
marks, the difference in performance was less than 2%.

Figure 5 shows in a similar manner how C4.5 performed
compared to bagging with C4.5, and compared to boosting
with each of the weak learners (using pseudo-loss for the
non-binary problems). As the figure shows, using boosting
with FindAttrTest does quite well as a learning algorithm
in its own right, in comparison to C4.5. This algorithm
beat C4.5 on 10 of the benchmarks (by at least 2%), tied
on 14, and lost on 3. As mentioned above, its average
performance relative to using FindAttrTest by itself was
55.2%. In comparison, C4.5’s improvement in performance
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FindAttrTest FindDecRule C4.5
error pseudo-loss error pseudo-loss error

name – boost bag boost bag – boost bag boost bag – boost bag

soybean-small 57.6 56.4 48.7 0.2 20.5 51.8 56.0 45.7 0.4 2.9 2.2 3.4 2.2
labor 25.1 8.8 19.1 24.0 7.3 14.6 15.8 13.1 11.3
promoters 29.7 8.9 16.6 25.9 8.3 13.7 22.0 5.0 12.7
iris 35.2 4.7 28.4 4.8 7.1 38.3 4.3 18.8 4.8 5.5 5.9 5.0 5.0

hepatitis 19.7 18.6 16.8 21.6 18.0 20.1 21.2 16.3 17.5
sonar 25.9 16.5 25.9 31.4 16.2 26.1 28.9 19.0 24.3
glass 51.5 51.1 50.9 29.4 54.2 49.7 48.5 47.2 25.0 52.0 31.7 22.7 25.7
audiology.stand 53.5 53.5 53.5 23.6 65.7 53.5 53.5 53.5 19.9 65.7 23.1 16.2 20.1

cleve 27.8 18.8 22.4 27.4 19.7 20.3 26.6 21.7 20.9
soybean-large 64.8 64.5 59.0 9.8 74.2 73.6 73.6 73.6 7.2 66.0 13.3 6.8 12.2
ionosphere 17.8 8.5 17.3 10.3 6.6 9.3 8.9 5.8 6.2
house-votes-84 4.4 3.7 4.4 5.0 4.4 4.4 3.5 5.1 3.6

votes1 12.7 8.9 12.7 13.2 9.4 11.2 10.3 10.4 9.2
crx 14.5 14.4 14.5 14.5 13.5 14.5 15.8 13.8 13.6
breast-cancer-w 8.4 4.4 6.7 8.1 4.1 5.3 5.0 3.3 3.2
pima-indians-di 26.1 24.4 26.1 27.8 25.3 26.4 28.4 25.7 24.4

vehicle 64.3 64.4 57.6 26.1 56.1 61.3 61.2 61.0 25.0 54.3 29.9 22.6 26.1
vowel 81.8 81.8 76.8 18.2 74.7 82.0 72.7 71.6 6.5 63.2 2.2 0.0 0.0
german 30.0 24.9 30.4 30.0 25.4 29.6 29.4 25.0 24.6
segmentation 75.8 75.8 54.5 4.2 72.5 73.7 53.3 54.3 2.4 58.0 3.6 1.4 2.7

hypothyroid 2.2 1.0 2.2 0.8 1.0 0.7 0.8 1.0 0.8
sick-euthyroid 5.6 3.0 5.6 2.4 2.4 2.2 2.2 2.1 2.1
splice 37.0 9.2 35.6 4.4 33.4 29.5 8.0 29.5 4.0 29.5 5.8 4.9 5.2
kr-vs-kp 32.8 4.4 30.7 24.6 0.7 20.8 0.5 0.3 0.6

satimage 58.3 58.3 58.3 14.9 41.6 57.6 56.5 56.7 13.1 30.0 14.8 8.9 10.6
agaricus-lepiot 11.3 0.0 11.3 8.2 0.0 8.2 0.0 0.0 0.0
letter-recognit 92.9 92.9 91.9 34.1 93.7 92.3 91.8 91.8 30.4 93.7 13.8 3.3 6.8

Table 2: Test error rates of various algorithms on benchmark problems.

over FindAttrTest was 49.3%.
Using boosting with FindDecRule did somewhat bet-

ter. The win-tie-lose numbers for this algorithm (compared
to C4.5) were 13-12-2, and its average improvement over
FindAttrTest was 58.1%.

4 BOOSTING A NEAREST-NEIGHBOR
CLASSIFIER

In this section we study the performance of a learning al-
gorithm which combines AdaBoost and a variant of the
nearest-neighbor classifier. We test the combined algorithm
on the problem of recognizing handwritten digits. Our goal
is not to improve on the accuracy of the nearest neighbor
classifier, but rather to speed it up. Speed-up is achieved by
reducing the number of prototypes in the hypothesis (and
thus the required number of distance calculations) without
increasing the error rate. It is a similar approach to that of
nearest-neighbor editing [12, 13] in which one tries to find
the minimal set of prototypes that is sufficient to label all
the training set correctly.

The dataset comes from the US Postal Service (USPS)
and consists of 9709 training examples and 2007 test exam-
ples. The training and test examples are evidently drawn
from rather different distributions as there is a very signifi-
cant improvement in the performance if the partition of the
data into training and testing is done at random (rather than
using the given partition). We report results both on the
original partitioning and on a training set and a test set of
the same sizes that were generated by randomly partitioning
the union of the original training and test sets.

Each image is represented by a 16� 16-matrix of 8-bit
pixels. The metric that we use for identifying the near-
est neighbor, and hence for classifying an instance, is the

standard Euclidean distance between the images (viewed
as vectors in R256). This is a very naive metric, but it
gives reasonably good performance. A nearest-neighbor
classifier which uses all the training examples as prototypes
achieves a test error of 5:7% (2:3% on randomly partitioned
data). Using the more sophisticated tangent distance [21]
is in our future plans.

Each weak hypothesis is defined by a subset P of the
training examples, and a mapping � : P ! [0; 1]k. Given a
new test point x, such a weak hypothesis predicts the vector
�(x0) where x0 2 P is the closest point to x.

On each round of boosting, a weak hypothesis is gener-
ated by adding one prototype at a time to the set P until the
set reaches a prespecified size. Given any set P , we always
choose the mapping � which minimizes the pseudo-loss
of the resulting weak hypothesis (with respect to the given
mislabel distribution).

Initially, the set of prototypes P is empty. Next, ten
candidate prototypes are selected at random according to
the current (marginal) distribution over the training exam-
ples. Of these candidates, the one that causes the largest
decrease in the pseudo-loss is added to the set P , and the
process is repeated. The boosting process thus influences
the weak learning algorithm in two ways: first, by changing
the way the ten random examples are selected, and second
by changing the calculation of the pseudo-loss.

It often happens that, on the following round of boost-
ing, the same set P will have pseudo-loss significantly less
than 1=2 with respect to the new mislabel distribution (but
possibly using a different mapping �). In this case, rather
than choosing a new set of prototypes, we reuse the same
set P in additional boosting steps until the advantage that
can be gained from the given partition is exhausted (details
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Figure 6: A sample of the examples that have the largest weight
after 3 of the 30 boosting iterations. The first line is after itera-
tion 4, the second after iteration 12 and the third after iteration 25.
Underneath each image we have a line of the form d:`1=w1,`2=w2,
where d is the label of the example, `1 and `2 are the labels that
get the highest and second highest vote from the combined hy-
pothesis at that point in the run of the algorithm, and w1, w2 are
the corresponding normalized votes.

omitted).
We ran 30 iterations of the boosting algorithm, and

the number of prototypes we used were 10 for the first
weak hypothesis, 20 for the second, 40 for the third, 80 for
the next five, and 100 for the remaining twenty-two weak
hypotheses. These sizes were chosen so that the errors of
all of the weak hypotheses are approximately equal.

We compared the performance of our algorithm to a
strawman algorithm which uses a single set of prototypes.
Similar to our algorithm, the prototype set is generated in-
crementally, comparing ten prototype candidates at each
step, and always choosing the one that minimizes the em-
pirical error. We compared the performance of the boosting
algorithm to that of the strawman hypothesis that uses the
same number of prototypes. We also compared our per-
formance to that of the condensed nearest neighbor rule
(CNN) [13], a greedy method for finding a small set of
prototypes which correctly classify the entire training set.

4.1 RESULTS AND DISCUSSION

The results of our experiments are summarized in Ta-
ble 3 and Figure 7. Table 3 describes the results from ex-
periments with AdaBoost (each experiment was repeated
10 times using different random seeds), the strawman al-
gorithm (each repeated 7 times) , and CNN (7 times). We
compare the results using a random partition of the data into
training and testing and using the partition that was defined
by USPS.

We see that in both cases, after more than 970 examples,
the training error of AdaBoost is much better than that of
the strawman algorithm. The performance on the test set
is similar, with a slight advantage to AdaBoost when the
hypotheses include more than 1670 examples, but a slight
advantage to strawman if fewer rounds of boostingare used.
After 2670 examples, the error of AdaBoost on the random
partition is (on average) 2:7%, while the error achieved
by using the whole training set is 2:3%. On the random
partition, the final error is 6:4%, while the error using the
whole training set is 5:7%.
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Figure 7: Graphs of the performance of the boosting algorithm
on a randomly partitioned USPS dataset. The horizontal axis
indicates the total number of prototypes that were added to the
combined hypothesis, and the vertical axis indicates error. The
topmost jagged line indicates the error of the weak hypothesis
that is trained at this point on the weighted training set. The
bold curve is the bound on the training error calculated using
Theorem 2. The lowest thin curve and the medium-bold curve
show the performance of the combined hypothesis on the training
set and test set, respectively.

Comparing to CNN, we see that both the strawman
algorithm and AdaBoost perform better than CNN even
when they use about 900 examples in their hypotheses.
Larger hypotheses generated by AdaBoost or strawman are
much better than that generated by CNN. The main problem
with CNN seems to be its tendency to overfit the training
data. AdaBoost and the strawman algorithm seem to suffer
less from overfitting.

Figure 7 shows a typical run of AdaBoost. The upper-
most jagged line is a concatenation of the errors of the weak
hypotheses with respect to the mislabel distribution. Each
peak followed by a valley corresponds to the beginning and
end errors of a weak hypothesis as it is being constructed,
one prototype at a time. The weighted error always starts
around 50% at the beginning of a boosting iteration and
drops to around 20-30%. The heaviest line describes the
upper bound on the training error that is guaranteed by The-
orem 2, and the two bottom lines describe the training and
test error of the final combined hypothesis.

It is interesting that the performance of the boosting
algorithm on the test set improved significantly after the
error on the training set has already become zero. This
is surprising because an “Occam’s razor” argument would
predict that increasing the complexity of the hypothesis
after the error has been reduced to zero is likely to degrade
the performance on the test set.

Figure 6 shows a sample of the examples that are given
large weights by the boosting algorithm on a typical run.
There seem to be two types of “hard” examples. First are
examples which are very atypical or wrongly labeled (such
as example 2 on the first line and examples 3 and 4 on the
second line). The second type, which tends to dominate on
later iterations, consists of examples that are very similar
to each other but have different labels (such as examples 3
versus 4 on the third line). Although the algorithm at this
point was correct on all training examples, it is clear from
the votes it assigned to different labels for these example
pairs that it was still trying to improve the discrimination
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random partition USPS partition
AdaBoost Strawman CNN AdaBoost Strawman CNN

rnd size theory train test train test test (size) theory train test train test test (size)

1 10 524.6 45.9 46.1 37.9 38.3 536.3 42.5 43.1 36.1 37.6
5 230 86.4 6.3 8.5 4.9 6.2 83.0 5.1 12.3 4.2 10.6

10 670 16.0 0.4 4.6 2.0 4.3 10.9 0.1 8.6 1.4 8.3
13 970 4.5 0.0 3.9 1.5 3.8 4.4 (990) 3.3 0.0 8.1 1.0 7.7 8.6 (865)

15 1170 2.4 0.0 3.6 1.3 3.6 1.5 0.0 7.7 0.8 7.5
20 1670 0.4 0.0 3.1 0.9 3.3 0.2 0.0 7.0 0.6 7.1
25 2170 0.1 0.0 2.9 0.7 3.0 0.0 0.0 6.7 0.4 6.9
30 2670 0.0 0.0 2.7 0.5 2.8 0.0 0.0 6.4 0.3 6.8

Table 3: Average error rates on training and test sets, in percent. For columns labeled “random partition,” a random partition of the union
of the training and test sets was used; “USPS partition” means the USPS-provided partition into training and test sets was used. Columns
labeled “theory” give theoretical upper bounds on training error calculated using Theorem 2. “Size” indicates number of prototypes
defining the final hypothesis.

between similar examples. This agrees with our intuition
that the pseudo-loss is a mechanism that causes the boosting
algorithm to concentrate on the hard to discriminate labels
of hard examples.

5 CONCLUSIONS

We have demonstrated that AdaBoost can be used in many
settings to improve the performance of a learning algorithm.
When starting with relatively simple classifiers, the im-
provement can be especially dramatic, and can often lead to
a composite classifier that outperforms more complex “one-
shot” learning algorithms like C4.5. This improvement is
far greater than can be achieved with bagging. Note, how-
ever, that for non-binary classification problems, boosting
simple classifiers can only be done effectively if the more
sophisticated pseudo-loss is used.

When starting with a complex algorithm like C4.5,
boosting can also be used to improve performance, but
does not have such a compelling advantage over bagging.
Boosting combined with a complex algorithm may give the
greatest improvement in performance when there is a rea-
sonably large amount of data available (note, for instance,
boosting’s performance on the “letter-recognition” problem
with 16,000 training examples). Naturally, one needs to
consider whether the improvement in error is worth the ad-
ditional computation time. Although we used 100 rounds
of boosting, Quinlan [19] got good results using only 10
rounds.

Boosting may have other applications, besides reducing
the error of a classifier. For instance, we saw in Section 4
that boosting can be used to find a small set of prototypes
for a nearest neighbor classifier.

As described in the introduction,boosting combines two
effects. It reduces the bias of the weak learner by forcing
the weak learner to concentrate on different parts of the
instance space, and it also reduces the variance of the weak
learner by averaging several hypotheses that were generated
from different subsamples of the training set. While there
is good theory to explain the bias reducing effects, there is
need for a better theory of the variance reduction.
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