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We present a simple algorithm for playing a repeated game. We show that a
player using this algorithm suffers average loss that is guaranteed to come close to
the minimum loss achievable by any fixed strategy. Our bounds are nonasymptotic
and hold for any opponent. The algorithm, which uses the multiplicative-weight
methods of Littlestone and Warmuth, is analyzed using the Kullback–Liebler diver-
gence. This analysis yields a new, simple proof of the min–max theorem, as well as
a provable method of approximately solving a game. A variant of our game-playing
algorithm is proved to be optimal in a very strong sense. Journal of Economic Lit-
erature Classification Numbers: C44, C70, D83. © 1999 Academic Press

1. INTRODUCTION

We study the problem of learning to play a repeated game. Let M be a
matrix. On each of a series of rounds, one player chooses a row i and the
other chooses a column j. The selected entry M�i; j� is the loss suffered by
the row player. We study play of the game from the row player’s perspective,
and therefore leave the column player’s loss or utility unspecified.

A simple goal for the row player is to suffer loss which is no worse than
the value of the game M (if viewed as a zero-sum game). Such a goal
may be appropriate when it is expected that the opposing column player’s
goal is to maximize the loss of the row player (so that the game is in fact
zero-sum). In this case, the row player can do no better than to play using a
min–max mixed strategy which can be computed using linear programming,
provided that the entire matrix M is known ahead of time, and provided
that the matrix is not too large. This approach has a number of potential
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drawbacks. For instance,

• M may be unknown;
• M may be so large that computing a min–max strategy using linear

programming is infeasible; or
• the column player may not be truly adversarial and may behave in

a manner that admits loss significantly smaller than the game value.

Overcoming these difficulties in the one-shot game is hopeless. In re-
peated play, however, one can hope to learn to play well against the par-
ticular opponent that is being faced.

Algorithms of this type were first proposed by Hannan (1957) and
Blackwell (1956), and later algorithms were proposed by Foster and
Vohra �1993; 1998; 1999�. These algorithms have the property that the loss
of the row player in repeated play is guaranteed to come close to the min-
imum loss achievable with respect to the sequence of plays taken by the
column player.

In this paper, we present a simple algorithm for solving this problem,
and give a simple analysis of the algorithm. The bounds we obtain are
not asymptotic and hold for any finite number of rounds. The algorithm
and its analysis are based directly on the “on-line prediction” methods of
Littlestone and Warmuth (1994).

The analysis of this algorithm yields a new (as far as we know) and simple
proof of von Neumann’s min–max theorem, as well as a provable method
of approximately solving a game. We also give more refined variants of the
algorithm for this purpose, and we show that one of these is optimal in a
very strong sense.

The paper is organized as follows. In Section 2, we define the mathemat-
ical setup and notation. In Section 3, we introduce the basic multiplicative
weights algorithm whose average performance is guaranteed to be almost
as good as that of the best fixed mixed strategy. In Section 4, we outline the
relationship between our work and some of the extensive existing work on
the use of multiplicative weights algorithms for on-line prediction. In Sec-
tion 5, we show how the algorithm can be used to give a simple proof of
Von-Neumann’s min–max theorem. In Section 6, we give a version of the
algorithm whose distributions are guaranteed to converge to an optimal
mixed strategy. We note the possible application of this algorithm to solv-
ing linear programming problems and reference other work that have used
multiplicative weights to this end. Finally, in Section 7, we show that the
convergence rate of the second version of the algorithm is asymptotically
optimal.

2. PLAYING REPEATED GAMES

We consider noncollaborative two-person games in normal form. The
game is defined by a matrix M with n rows and m columns. There are two
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players called the row player and column player. To play the game, the row
player chooses a row i, and, simultaneously, the column player chooses a
column j. The selected entry M�i; j� is the loss suffered by the row player.
The column player’s loss or utility is unspecified.

For the sake of simplicity, throughout this paper, we assume that all the
entries of the matrix M are in the range �0; 1�. Simple scaling can be used
to get similar results for general bounded ranges. Also, we restrict our-
selves to the case where the number of choices available to each player
is finite. However, most of the results translate with very mild additional
assumptions to cases in which the number of choices is infinite. For a dis-
cussion of infinite matrix games see, for instance, Chapter 2 in Ferguson
(1967).

Following standard terminology, we refer to the choice of a specific row
or column as a pure strategy and to a distribution over rows or columns as a
mixed strategy. We use P to denote a mixed strategy of the row player, and
Q to denote a mixed strategy of the column player. We use P�i� to denote
the probability that P associates with the row i, and we write M�P;Q� =
PTMQ to denote the expected loss (of the row player) when the two mixed
strategies are used. In addition, we write M�P; j� and M�i;Q� to denote
the expected loss when one side uses a pure strategy and the other a mixed
strategy. Although these quantities denote expected losses, we usually refer
to them simply as losses.

If we assume that the loss of the row player is the gain of the column
player, we can think about the game as a zero-sum game. Under such an
interpretation we use P∗ and Q∗ to denote optimal mixed strategies for M,
and v =M�P∗;Q∗� to denote the value of the game.

The main subject of this paper is an algorithm for adaptively selecting
mixed strategies. The algorithm is used to choose a mixed strategy for one
of the players in the context of repeated play. We usually associate the al-
gorithm with the row player. To emphasize the roles of the two players
in our context, we sometimes refer to the row and column players as the
learner and the environment, respectively. An instance of repeated play is
a sequence of rounds of interactions between the learner and the environ-
ment. The game matrix M used in the interactions is fixed but is unknown
to the learner. The learner only knows the number of choices that it has,
i.e., the number of rows. On round t = 1; : : : ; T :

1. the learner chooses mixed strategy Pt ;
2. the environment chooses mixed strategy Qt (which may be chosen

with knowledge of Pt)
3. the learner is permitted to observe the loss M�i;Qt� for each row

i; this is the loss it would have suffered had it played using pure strategy i;
4. the learner suffers loss M�Pt ;Qt�.
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The basic goal of the learner is to minimize its total loss
∑T
t=1 M�Pt ;Qt�.

If the environment is maximally adversarial then a related goal is to ap-
proximate the optimal mixed row strategy P∗. However, in more benign
environments, the goal may be to suffer the minimum loss possible, which
may be much better than the value of the game.

Finally, in what follows, we find it useful to measure the distance between
two distributions P1 and P2 using the Kullback–Leibler divergence, also called
the relative entropy, which is defined to be

RE �P1 �P2� :=
n∑
i=1

P1�i� ln
(

P1�i�
P2�i�

)
:

As is well known, the relative entropy is a measure of discrepancy between
distributions in that it is nonnegative and is equal to zero if and only if P1 =
P2. For real numbers p1; p2 ∈ �0; 1�, we use the shorthand RE �p1 �p2� to
denote the relative entropy between Bernoulli distributions with parameters
p1 and p2, i.e.,

RE �p1 �p2� := p1 ln
(
p1

p2

)
+ �1− p1� ln

(
1− p1

1− p2

)
:

3. THE BASIC ALGORITHM

We now describe our basic algorithm for repeated play, which we call
MW for “multiplicative weights.” This algorithm is a direct generalization
of Littlestone and Warmuth’s “weighted majority algorithm” (1994), which
was discovered independently by Fudenberg and Levine (1995).

The learning algorithm MW starts with some initial mixed strategy P1
which it uses for the first round of the game. After each round t, the learner
computes a new mixed strategy Pt+1 by a simple multiplicative rule,

Pt+1�i� = Pt�i�
βM�i;Qt�

Zt
;

where Zt is a normalization factor,

Zt =
n∑
i=1

Pt�i�βM�i;Qt�;

and β ∈ �0; 1� is a parameter of the algorithm.
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The main theorem concerning this algorithm is

Theorem 1. For any matrix M with n rows and entries in �0; 1�, and for
any sequence of mixed strategies Q1; : : : ;QT played by the environment, the
sequence of mixed strategies P1; : : : ;PT produced by algorithm MW satisfies

T∑
t=1

M�Pt ;Qt� ≤ min
P

[
aβ

T∑
t=1

M�P;Qt� + cβRE �P �P1�
]
;

where

aβ =
ln�1/β�
1− β cβ =

1
1− β:

Our proof uses a kind of “amortized analysis” in which relative entropy is
used as a “potential” function. This method of analysis for on-line learning
algorithms is due to Kivinen and Warmuth (1997). The heart of the proof
is in the following lemma, which bounds the change in potential before and
after a single round.

Lemma 2. For any iteration t where MW is used with parameter β, and
for any mixed strategy P̃,

RE
(
P̃ �Pt+1

)−RE
(
P̃ �Pt

)≤ (ln
1
β

)
M�P̃;Qt�+ ln

(
1−�1−β�M�Pt ;Qt�

)
:

Proof. The proof of the lemma can be summarized by the following
sequence of inequalities,

RE
(
P̃ �Pt+1

)−RE
(
P̃ �Pt

)
=

n∑
i=1

P̃�i� ln P̃�i�
Pt+1�i�

−
n∑
i=1

P̃�i� ln P̃�i�
Pt�i�

(1)

=
n∑
i=1

P̃�i� ln Pt�i�
Pt+1�i�

(2)

=
n∑
i=1

P̃�i� ln Zt
βM�i;Qt� (3)

=
(

ln
1
β

) n∑
i=1

P̃�i�M�i;Qt� + lnZt (4)

≤
(

ln
1
β

)
M�P̃;Qt� + ln

[
n∑
i=1

Pt�i� �1− �1− β�M�i;Qt��
]

(5)

=
(

ln
1
β

)
M�P̃;Qt� + ln

(
1− �1− β�M�Pt ;Qt�

)
:
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Line (1) follows from the definition of relative entropy. Line (3) follows
from the update rule of MW and line (4) follows by simple algebra. Finally,
line (5) follows from the definition of Zt combined with the fact that, by
convexity, βx ≤ 1− �1− β�x for β ≥ 0 and x ∈ �0; 1�.

Proof of Theorem 1. Let P̃ be any mixed row strategy. We first simplify
the last term in the inequality of Lemma 2 by using the fact that ln�1− x� ≤
−x for any x < 1 which implies that

RE
(
P̃ �Pt+1

)−RE
(
P̃ �Pt

) ≤ (ln
1
β

)
M�P̃;Qt� − �1− β�M�Pt ;Qt�:

Summing this inequality over t = 1; : : : ; T we get

RE
(
P̃ �PT+1

)−RE
(
P̃ �P1

)≤ (ln
1
β

) T∑
t=1

M�P̃;Qt�− �1−β�
T∑
t=1

M�Pt ;Qt�:

Noting that RE
(
P̃ �PT+1

) ≥ 0, rearranging the inequality and noting that
P̃ was chosen arbitrarily gives the statement of the theorem.

In order to use MW, we need to choose the initial distribution P1 and the
parameter β. We start with the choice of P1. In general, the closer P1 is to a
good mixed strategy P̃, the better the bound on the total loss MW. However,
even if we have no prior knowledge about the good mixed strategies, we
can achieve reasonable performance by using the uniform distribution over
the rows as the initial strategy. This gives us a performance bound that
holds uniformly for all games with n rows:

Corollary 3. If MW is used with P1 set to the uniform distribution then
its total loss is bounded by

T∑
t=1

M�Pt ;Qt� ≤ aβ min
P

T∑
t=1

M�P;Qt� + cβ ln n;

where aβ and cβ are as defined in Theorem 1.

Proof. If P1�i� = 1/n for all i then RE �P �P1� ≤ ln n for all P.

Next we discuss the choice of the parameter β. As β approaches 1, aβ
approaches 1 from above while cβ increases to infinity. On the other hand,
if we fix β and let the number of rounds T increase, the second term cβ ln n
becomes negligible (since it is fixed) relative to T . Thus, by choosing β as a
function of T which approaches 1 for T →∞, the learner can ensure that
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its average per-trial loss will not be much worse than the loss of the best
strategy. This is formalized in the following corollary:

Corollary 4. Under the conditions of Theorem 1 and with β set to

1

1+
√

2 ln n
T

;

the average per-trial loss suffered by the learner is

1
T

T∑
t=1

M�Pt ;Qt� ≤ min
P

1
T

T∑
t=1

M�P;Qt� + 1T;n;

where

1T;n =
√

2 ln n
T
+ ln n

T
= O

(√
ln n
T

)
:

Proof. It can be shown that − lnβ ≤ �1− β2�/�2β� for β ∈ �0; 1�. Ap-
plying this approximation and the given choice of β yields the result.

Since 1T;n→ 0 as T →∞, we see that the amount by which the average
per-trial loss of the learner exceeds that of the best mixed strategy can be
made arbitrarily small for large T .

Note that in the analysis we made no assumption about the strategy used
by the environment. Theorem 1 guarantees that its cumulative loss is not
much larger than that of any fixed mixed strategy. As shown below, this
implies that the loss cannot be much larger than the game value. However,
if the environment is nonadversarial, there might be a better row strategy,
in which case the algorithm is guaranteed to be almost as good as this better
strategy.

Corollary 5. Under the conditions of Corollary 4,

1
T

T∑
t=1

M�Pt ;Qt� ≤ v + 1T;n;

where v is the value of the game M.

Proof. Let P∗ be a min–max strategy for M so that for all column strate-
gies Q; M�P∗;Q� ≤ v. Then, by Corollary 4,

1
T

T∑
t=1

M�Pt ;Qt� ≤
1
T

T∑
t=1

M�P∗;Qt� + 1T;n ≤ v + 1T;n:
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3.1. Convergence with Probability 1

Suppose that the mixed strategies that are generated by MW are used to
select one of the rows at each iteration. From Theorem 1 and Corollary 4
we know that the expected per-iteration loss of MW approaches the optimal
achievable value for any fixed strategy as T →∞. However, we might want
a stronger assurance of the performance of MW; for example, we would
like to know that the actual per-iteration loss is, with high probability, close
to the expected value. As the following lemma shows, the per-trial loss
of any algorithm for the repeated game is, with high probability, at most
O�1/√T � away from the expected value. The only required game property
is that the game matrix elements are all in �0; 1�.

Lemma 6. Let the players of a matrix game use any pair of methods for
choosing their mixed strategies on iteration t based on past game events. Let
Pt and Qt denote the mixed strategies used by the players on iteration t and
let M�it; jt� denote the actual game outcome on iteration t that is chosen at
random according to Pt and Qt . Then, for every ε > 0,

Pr

[
1
T

∣∣∣∣∣ T∑
t=1

�M�it; jt� −M�Pt ;Qt��
∣∣∣∣∣ > ε

]
≤ 2 exp

(
−1

2
Tε2

)
;

where probability is taken with respect to the random choice of rows i1; : : : ; iT
and columns j1; : : : ; jT .

Proof. The proof follows directly from a theorem proved by Hoeff-
ding (1963) about the convergence of a sum of bounded-step martingales
which is commonly called “Azuma’s lemma.” The sequence of random vari-
ables Yt = M�it; jt� −M�Pt ;Qt� is a martingale difference sequence. As
the entries of M are bounded in �0; 1� we have that �Yt � ≤ 1. Thus we can
directly apply Azuma’s lemma and get that, for any a > 0:

Pr

[∣∣∣∣∣ T∑
t=1

Yt

∣∣∣∣∣ > a
]
≤ 2 exp

(
− a

2

2T

)
:

Substituting a = εT we get the statement of the lemma.

If we want to have an algorithm whose performance converges to the
optimal performance we need the value of β to approach 1 as the length of
the sequence increases. One way of doing this, which we describe here, is to
have the row player divide the time sequence into “epochs.” In each epoch,
the row player restarts the algorithm MW (resetting all the row distribution
to the uniform distribution) and uses a different value of β which is tuned
according to the length of the epoch. We show that such a procedure can
guarantee, almost surely, that the long term per-iteration loss is at most the
expected loss of any fixed mixed strategy.
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We denote the length of the kth epoch by Tk and the value of β used
for that epoch by βk. One choice of epochs that gives convergence with
probability 1 is

Tk = k2; βk =
1

1+
√

2 ln n
k2

: (6)

The convergence properties of this strategy are given in the following the-
orem:

Theorem 7. Suppose the repeated game is continued for an unbounded
number of rounds. Let Pt be chosen according to the method of epochs with
the parameters described in Eq. (6), and let it be chosen at random accord-
ing to Pt . Let the environment choose jt as an arbitrary stochastic function of
past plays. Then, for every ε > 0, with probability 1 with respect to the ran-
domization used by both players, the following inequality holds for all but a
finite number of values of T :

1
T

T∑
t=1

M�it; jt� ≤ min
P

1
T

T∑
t=1

M�P; jt� + ε:

Proof. For each epoch k we select the accuracy parameter εk =
2
√

lnk/k. We denote the sequence of iterations that constitute the kth
epoch by Sk. We call the kth epoch “good” if the average per-trial loss for
that epoch is within εk from its expected value, i.e., if∑

t∈Sk
M�it; jt� ≤

∑
t∈Sk

M�Pt ; jt� + Tkεk: (7)

From Lemma 6 (where we define Qt to be the mixed strategy which gives
probability 1 to jt), we get that the probability that the kth epoch is bad is
bounded by

2 exp
(
−1

2
Tkε

2
k

)
= 2
k2 :

The sum of this bound over all k from 1 to∞ is finite. Thus, by the Borel–
Cantelli lemma, we know that with probability 1 all but a finite number
of epochs are good. Thus, for the sake of computing the average loss for
T →∞ we can ignore the influence of the bad epochs.

We now use Corollary 4 to bound the expected total loss. We apply this
corollary in the case that Qt is again defined to be the mixed strategy which
gives probability 1 to jt . We have from the corollary:∑

t∈Sk
M�Pt ; jt� ≤ min

P

∑
t∈Sk

M�P; jt� +
√

2Tk ln n+ ln n: (8)



88 freund and schapire

Combining Eqs. (7) and (8) we find that if the kth epoch is good then,
for any distribution P̃ over the actions of the algorithm∑

t∈Sk
M�it; jt� ≤

∑
t∈Sk

M�P̃; jt� +
√

2Tk ln n+ ln n+ Tkεk

≤ ∑
t∈Sk

M�P̃; jt� + k
√

2 ln n+ ln n+ 2k
√

lnk:

Thus the total loss over the first m epochs (ignoring the finite number of
bad iterations whose influence is negligible) is bounded by∑
t∈S1∪···∪Sm

M�it; jt� ≤
∑

t∈S1∪···∪Sm
M�P̃; jt� +

m∑
k=1

[
k
√

2 ln n+ ln n+ 2k
√

lnk
]

≤ ∑
t∈S1∪···∪Sm

M�P̃; jt� +m2
√

lnm
[√

2 ln n+ ln n+ 2
]
:

As the total number of rounds in the first m epochs is
∑m
k=1 k

2 = O�m3�
we find that, after dividing both sides by the number of rounds, the error
term decreases to zero.

4. RELATION TO ON-LINE LEARNING

One interesting use of game theory is in the context of predictive de-
cision making [see, for instance, Blackwell and Girshick (1954) or Fergu-
son (1967)]. On-line decision making can be viewed as a repeated game
between a decision maker and nature. The entry M�i; t� represents the loss
of (or negative utility for) the prediction algorithm if it chooses action i
at time t. The goal of the algorithm is to adaptively generate distributions
over actions so that its expected cumulative loss is not much worse than the
cumulative loss it would have incurred had it been able to choose a single
fixed distribution with prior knowledge of the whole sequence of columns.

This is a nonstandard framework for analyzing on-line decision algo-
rithms in that one makes no statistical assumptions regarding the relation-
ship between actions and their losses. The only assumption is that there
exists some fixed mixed strategy (distribution over actions) whose expected
performance is nontrivial. This approach was previously described in one of
our earlier papers (Freund and Schapire, 1996); the current paper expands
and refines the results given there.

The algorithm MW was originally suggested by Littlestone and War-
muth (1994) and (in a somewhat more sophisticated form) by Vovk (1990)
in the context of on-line prediction. The algorithm was also discovered in-
dependently by Fudenberg and Levine (1995). Research on the use of the
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multiplicative weights algorithm for on-line prediction is extensive and on-
going, and it is out of the scope of this paper to give a complete review of
it. However, we try to sketch some of the main connections between the
work described in this paper and this expanding line of research.

The on-line prediction framework is a refinement of the decision theo-
retic framework described above. Here the prediction algorithm generates
distributions over predictions, nature chooses an outcome, and the loss in-
curred by the prediction algorithm is a known loss function which maps
action–outcome pairs to real values. This framework restricts the choices
that can be made by nature because once the predictions have been fixed,
the only loss columns that are possible are those that correspond to possible
outcomes. This is the reason that for various loss functions one can prove
better bounds than in the less structured context of on-line decision mak-
ing. The approach is closely related to work by Dawid (1984), Foster (1991),
and Vovk (1990).

One loss function that has received particular attention is the log loss
function. Here the prediction is assumed to be a distribution P over some
domain X, the outcome is an element from the domain x ∈ X, and the loss
is − logP�x�. This loss has several important interpretations which connect
it to likelihood analysis and to coding theory. Note that as the probability of
an element can be arbitrarily small, the loss can be arbitrarily high. On-line
algorithms for making predictions in this case have been extensively studied
in information theory under the name universal compression of individual
sequences (Ziv, 1998; Shtar‘kov, 1987). In particular, a well-known result is
that the multiplicative weights algorithm, with β set to 1/e is a near-optimal
algorithm in this context. It is also interesting to note that this version of the
multiplicative weights algorithm is equivalent to the Bayes prediction rule
where the generated distributions over the rows are equal to the Bayesian
posterior distributions. On the other hand, this equivalence holds only for
the log-loss; for other loss functions there is no simple relationship between
the multiplicative weights algorithm and the Bayesian algorithm.

Cover (1991) and Cover and Ordentlich (1996) and later Helmbold et al.
(1998) extended the log-loss analysis to the design of algorithms for “uni-
versal portfolios.” There is an extensive literature on on-line prediction with
other specific loss functions. For example, for work on prediction loss, see
Feder et al. (1992), Cesa-Bianchi et al. (1997) and for work on more general
families of loss functions see Vovk (1998) and Kivinen and Warmuth (1997).

Another extension of the on-line decision problem that is worth mention-
ing here is making decisions when the feedback given is a single entry of
the game matrix. In other words, we assume that after the row player has
chosen a distribution over the rows, a single row is chosen at random ac-
cording to the distribution. The row player suffers the loss associated with
the selected row and the column chosen by its opponent, and the game re-
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peats. The goal of the row player is the same as before—to minimize its
expected average loss over a sequence of repeated games. Clearly, the goal
is much harder here since only a single entry of the matrix is revealed on
each round. Auer et al. (1995) study this model in detail and show that
a variant of the multiplicative weights algorithm converges to the perfor-
mance of the best row distribution in repeated play.

5. PROOF OF THE MIN–MAX THEOREM

Corollary 5 shows that the loss of MW can never exceed the value of the
game M by more than 1T;n. More interestingly, Corollary 4 can be used to
derive a very simple proof of von Neumann’s min–max theorem. To prove
this theorem, we need to show that

min
P

max
Q

M�P;Q� ≤ max
Q

min
P

M�P;Q�: (9)

(Proving that minP maxQ M�P;Q� ≥ maxQ minP M�P;Q� is relatively
straightforward and so is omitted.)

Suppose that we run algorithm MW against a maximally adversarial envi-
ronment which always chooses strategies which maximize the learner’s loss.
That is, on each round t, the environment chooses

Qt = arg max
Q

M�Pt ;Q�: (10)

Let P = 1
T

∑T
t=1 Pt and Q = 1

T

∑T
t=1 Qt . Clearly, P and Q are probability

distributions.
Then we have

min
p

max
Q

PTMQ ≤ max
Q

P
T

MQ

= max
Q

1
T

T∑
t=1

PT
t MQ by definition of P

≤ 1
T

T∑
t=1

max
Q

PT
t MQ

= 1
T

T∑
t=1

PT
t MQt by definition of Qt

≤ min
P

1
T

T∑
t=1

PTMQt + 1T;n by Corollary 4

= min
P

PTMQ+ 1T;n by definition of Q

≤ max
Q

min
P

PTMQ+ 1T;n:
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Since 1T;n can be made arbitrarily close to zero, this proves Eq. (9) and
the min–max theorem.

6. APPROXIMATELY SOLVING A GAME

Aside from yielding a proof for a famous theorem that by now has many
proofs, the preceding derivation shows that algorithm MW can be used to
find an approximate min–max or max–min strategy. Finding these “optimal”
strategies is called solving the game M.

We give three methods for solving a game using exponential weights. In
Section 6.1, we show how one can use the average of the generated row
distributions over T iterations as an approximate solution for the game.
This method sets T and β as a function of the desired accuracy before
starting the iterative process.

In Section 6.2, we show that if an upper bound u on the value of the
game is known ahead of time then one can use a variant of MW that
generates a sequence of row distributions such that the expected loss of
the tth distribution approaches u. Finally, in Section 6.3, we describe a
related adaptive method that generates a sparse approximate solution for
the column distribution. At the end of the paper, in Section 7, we show that
the convergence rate of the last two methods is asymptotically optimal.

6.1. Using the Average of the Row Distributions

Skipping the first inequality of the sequence of equalities and inequalities
at the end of Section 5, we see that

max
Q

M�P;Q� ≤ max
Q

min
P

M�P;Q� + 1T;n = v + 1T;n:

Thus, the vector P is an approximate min–max strategy in the sense that for
all column strategies Q, M�P;Q� does not exceed the game value v by more
than 1T;n. Since 1T;n can be made arbitrarily small, this approximation can
be made arbitrarily tight.

Similarly, ignoring the last inequality of this derivation, we have that

min
P

M�P;Q� ≥ v − 1T;n;

so Q also is an approximate max–min strategy. Furthermore, it can be
shown that a column strategy Qt satisfying Eq. (10) can always be cho-
sen to be a pure strategy (i.e., a mixed strategy concentrated on a single
column of M). Therefore, the approximate max–min strategy Q has the ad-
ditional favorable property of being sparse in the sense that at most T of
its entries are nonzero.
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6.2. Using the Final Row Distribution

In the analysis presented so far we have shown that the average of the
strategies used by MW converges to an optimal strategy. Now we show that
if the row player knows an upper bound u on the value of the game v
then it can use a variant of MW to generate a sequence of mixed strategies
that approach a strategy which achieves loss u. (If no such upper bound is
known, one can use the standard trick of solving the larger game matrix(

M 0

0 −MT

)
;

whose value is always zero.) To do that, we have the algorithm select a
different value of β for each round of the game. If the expected loss on the
tth iteration M�Pt ;Qt� is less than u, then the row player does not change
the mixed strategy, because, in a sense, it is “good enough.” However, if
M�Pt ;Qt� ≥ u then the row player uses MW with parameter

βt =
u�1−M�Pt ;Qt��
�1− u�M�Pt ;Qt�

:

We call this algorithm vMW (the “v” stands for “variable”). For this algo-
rithm, as the following theorem shows, the distance between Pt and any
mixed strategy that achieves u decreases by an amount that is a function of
the divergence between M�Pt ;Qt� and u.

Theorem 8. Let P̃ be any mixed strategy for the rows such that
maxQ M�P̃;Q� ≤ u. Then on any iteration of algorithm vMW in which
M�Pt ;Qt� ≥ u the relative entropy between P̃ and Pt+1 satisfies

RE
(
P̃ �Pt+1

) ≤ RE
(
P̃ �Pt

)−RE �u �M�Pt ;Qt��:

Proof. Note that when u ≤ M�Pt ;Qt� we get that βt ≤ 1. Combining
this observation with the definition of P̃ and the statement of Lemma 2 we
get that

RE�P̃ �Pt+1� −RE�P̃ �Pt�
≤M�P̃;Qt� ln�1/βt� + ln

(
1− �1− βt�M�Pt ;Qt�

)
≤ u ln�1/βt� + ln

(
1− �1− βt�M�Pt ;Qt�

)
: (11)

The choice of βt was chosen to minimize the last expression. Plugging the
given choice of βt into this last expression we get the statement of the
theorem.
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Suppose M�Pt ;Qt� ≥ u for all t. Then the main inequality of this theorem
can be applied repeatedly yielding the bound

RE
(
P̃ �PT+1

) ≤ RE
(
P̃ �P1

)− T∑
t=1

RE �u �M�Pt ;Qt��:

Since relative entropy is nonnegative, and since the inequality holds for all
T , we have

∞∑
t=1

RE �u �M�Pt ;Qt�� ≤ RE
(
P̃ �P1

)
: (12)

Assuming that RE
(
P̃ �P1

)
is finite (as it will be, for example, if P1 is uni-

form), this inequality implies, for instance, that M�Pt ;Qt� can exceed u+ ε
at most finitely often for any ε > 0. More specifically, we can prove the
following:

Corollary 9. Suppose that vMW is used to play a game M whose value
is known to be at most u. Suppose also that we choose P1 to be the uni-
form distribution. Then for any sequence of column strategies Q1;Q2; : : :, the
number of rounds on which the loss M�Pt ;Qt� ≥ u+ ε is at most

ln n
RE �u �u+ ε� :

Proof. Since rounds on which M�Pt ;Qt� < u are effectively ignored
by vMW, we assume without loss of generality that M�Pt ;Qt� ≥ u for all
rounds t. Let S = �t: M�Pt ;Qt� ≥ u + ε� be the set of rounds for which
the loss is at least u+ ε, and let P∗ be a min–max strategy. By Eq. (12), we
have that ∑

t∈S
RE �u �u+ ε� ≤∑

t∈S
RE �u �M�Pt ;Qt��

≤
∞∑
t=1

RE �u �M�Pt ;Qt��

≤ RE �P∗ �P1� ≤ ln n:

Therefore,

�S� ≤ ln n
RE �u �u+ ε� :
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In Section 7, we show that this dependence on n, u; and ε cannot be
improved by any constant factor.

6.3. Convergence of a Column Distribution

When β is fixed, we showed in Section 6.1 that the average Q of the
Qt ’s is an approximate solution of the game, i.e., that there are no rows i
for which M�i;Q� is less than v − 1T;n. For the algorithm described above
in which βt varies, we can derive a more refined bound of this kind for a
weighted mixture of the Qt ’s.

Theorem 10. Assume that on every iteration of algorithm vMW, we have
that M�Pt ;Qt� ≥ u. Let

Q̂ =
∑T
t=1 Qt ln�1/βt�∑T
t=1 ln�1/βt�

:

Then

∑
ixM�i; Q̂�≤u

P1�i� ≤ exp

(
−

T∑
t=1

RE �u �M�Pt ;Qt��
)
:

Proof. If M�P̃; Q̂� ≤ u, then, combining Eq. (11) for t = 1; : : : ; T , we
have

RE
(
P̃ �PT+1

)−RE
(
P̃ �P1

)
≤

T∑
t=1

M�P̃;Qt� ln�1/βt� +
T∑
t=1

ln
(
1− �1− βt�M�Pt ;Qt�

)
=M�P̃; Q̂�

T∑
t=1

ln�1/βt� +
T∑
t=1

ln
(
1− �1− βt�M�Pt ;Qt�

)
≤ u ·

T∑
t=1

ln�1/βt� +
T∑
t=1

ln
(
1− �1− βt�M�Pt ;Qt�

)
= −

T∑
t=1

RE �u �M�Pt ;Qt��;

for our choice of βt . In particular, if i is a row for which M�i; Q̂� ≤ u, then,
setting P̃ to the associated pure strategy, we get

ln
(

P1�i�
PT+1�i�

)
≤ −

T∑
t=1

RE �u �M�Pt ;Qt��;
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so ∑
ixM�i;Q̂�≤u

P1�i� ≤
∑

ixM�i;Q̂�≤u
PT+1�i� exp

(
−

T∑
t=1

RE �u �M�Pt ;Qt��
)

≤ exp

(
−

T∑
t=1

RE �u �M�Pt ;Qt��
)
;

since PT+1 is a distribution.

Thus, if M�Pt ;Qt� is bounded away from u, the fraction of rows i (as
measured by P1) for which M�i; Q̂� ≤ u drops to zero exponentially fast.
This is the case, for instance, if Eq. (10) holds and u ≤ v− ε for some ε > 0
where v is the value of M.

Thus, a single application of the exponential weights algorithm yields
approximate solutions for both the column and row players. The solution
for the row player consists of the multiplicative weights, while the solution
for the column player consists of the distribution on the observed columns
as described in Theorem 10.

Given a game matrix M, we have a choice of whether to solve M or −MT.
One natural choice would be to choose the orientation which minimizes the
number of rows. In a related paper (Freund and Schapire, 1996), we studied
the relationship between solving M or −MT using the multiplicative weights
algorithm in the context of machine learning. In that context, the solution
for game matrix M is related to the on-line prediction problem described
in Section 4, while the “dual” solution for −MT corresponds to a method
of learning called “boosting.”

6.4. Application to Linear Programming

It is well known that any linear programming problem can be reduced
to the problem of solving a game (see, for instance, Owen (1982, The-
orem III.2.6). Thus, the algorithms we have presented for approximately
solving a game can be applied more generally for approximate linear pro-
gramming.

Similar and closely related methods of approximately solving linear pro-
gramming problems have previously appeared, for instance, in the work of
Young (1995), Grigoriadis and Khachiyan (1991, 1995), and Plotkin et al.
(1995).

Although, in principle, our algorithms are applicable to general linear
programming problems, they are best suited to problems of a particular
form. Specifically, they may be most appropriate for the setting we have
described of approximately solving a game when an oracle is available for
choosing columns of the matrix on every round. When such an oracle is
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available, our algorithm can be applied even when the number of columns
of the matrix is very large or even infinite, a setting that is clearly infeasi-
ble for some of the other, more traditional linear programming algorithms.
Solving linear programming problems in the presence of such an oracle
was also studied by Young (1995) and Plotkin et al. (1995). See also our
earlier paper (Freund and Schapire, 1996) for detailed examples of prob-
lems arising naturally in the field of machine learning with exactly these
characteristics.

7. OPTIMALITY OF THE CONVERGENCE RATE

In Corollary 9, we showed that using the algorithm vMW starting from
the uniform distribution over the rows guarantees that the number of times
that M�Pt ;Qt� can exceed u+ ε is bounded by �ln n�/RE �u �u+ ε� where
u is a known upper bound on the value of the game M. In this section,
we show that this dependence of the rate of convergence on n, u; and ε is
optimal in the sense that no adaptive game-playing algorithm can beat this
bound even by a constant factor. This result is formalized by Theorem 11
below.

A related lower bound result is proved by Klein and Young (1999) in the
context of approximately solving linear programs.

Theorem 11. Let 0 < u < u + ε < 1, and let n be a sufficiently large
integer. Then for any adaptive game-playing algorithm A, there exists a game
matrix M of n rows and a sequence of column strategies such that:

1. the value of game M is at most u; and
2. the loss M�Pt ;Qt� suffered by A on each round t = 1; : : : ; T is at

least u+ ε, where

T =
⌊

ln n− 5 ln ln n
RE �u �u+ ε�

⌋
≥ �1− o�1�� ln n

RE �u �u+ ε� :

Proof. The proof uses a probabilistic argument to show that for any al-
gorithm, there exists a matrix (and sequence of column strategies) with the
properties stated in the theorem. That is, for the purposes of the proof,
we imagine choosing the matrix M at random according to an appropriate
distribution, and we show that the stated properties hold with strictly posi-
tive probability, implying that there must exist at least one matrix for which
they hold.

Let r = u+ ε. The random matrix M has n rows and T columns, and is
chosen by selecting each entry M�i; j� independently to be 1 with probabil-
ity r, and 0 with probability 1− r. On round t, the row player (algorithm A)
chooses a row distribution Pt , and, for the purposes of our construction, we
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assume that the column player responds with column t. That is, the column
strategy Qt chosen on round t is concentrated on column t.

Given this random construction, we need to show that properties 1 and 2
hold with positive probability for n sufficiently large.

We begin with property 2. On round t, the row player chooses a distribu-
tion Pt , and the column player responds with column t. We require that the
loss M�Pt ; t� be at least r = u+ ε. Since the matrix M is chosen at random,
we need a lower bound on the probability that M�Pt ; t� ≥ r. Moreover,
because the row player has sole control over the choice of Pt ; we need a
lower bound on this probability which is independent of Pt : To this end, we
prove the following lemma:

Lemma 12. For every r ∈ �0; 1�, there exists a number Br > 0 with the fol-
lowing property: Let n be any positive integer, and let α1; : : : ; αn be nonnega-
tive numbers such that

∑n
i=1 αi = 1. Let X1; : : : ;Xn be independent Bernoulli

random variables with Pr�Xi = 1� = r and Pr�Xi = 0� = 1− r. Then

Pr
[ n∑
i=1

αiXi ≥ r
]
≥ Br > 0:

Proof. See the Appendix.

To apply the lemma, let αi = Pt�i� and let Xi =M�i; t�. Then the lemma
implies that

Pr
[
M�Pt ; t� ≥ r

] ≥ Br;
where Br is a positive number which depends on r but which is independent
of n and Pt . It follows that

Pr
[∀t: M�Pt ; t� ≥ r

] ≥ BTr :
In other words, property 2 holds with probability at least BTr .

We next show that property 1 fails to hold with probability strictly smaller
than BTr so that both properties must hold simultaneously with positive
probability.

Define the weight of row i, denoted W �i�, to be the fraction of 1’s in the
row: W �i� =∑T

j=1 M�i; j�/T . We say that a row is light if W �i� ≤ u− 1/T .
Let P′ be a row distribution which is uniform over the light rows and zero
on the heavy rows. We show that, with high probability, maxj M�P′; j� ≤ u,
implying an upper bound of u on the value of game M.

Let λ denote the probability that a given row i is light; this is the same
probability for all rows. Let n′ be the number of light rows.

We show first that n′ ≥ λn/2 with high probability. The expected value
of n′ is λn. Using a form of Chernoff bounds proved by Angluin and
Valiant (1979), we have that

Pr
[
n′ < λn/2

] ≤ exp�−λn/8�: (13)
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We next upper bound the probability that M�P′; j� exceeds u for any
column j. Conditional on i being a light row, the probability that M�i; j� = 1
is at most u − 1/T . Moreover, if i1 and i2 are distinct rows, then M�i1; j�
and M�i2; j� are independent, even if we condition on both being light rows.
Therefore, applying Hoeffding’s inequality (1963) to column j and the n′

light rows, we have that, for all j,

Pr
[
M�P′; j� > u � n′] ≤ e−2n′/T 2

:

Thus,

Pr
[
max
j

M�P′; j� > u � n′
]
≤ Te−2n′/T 2

;

and so

Pr
[
max
j

M�P′; j� > u � n′ ≥ λn/2
]
≤ Te−λn/T 2

:

Combined with Eq. (13), this implies that

Pr
[
max
j

M�P′; j� > u
]
≤ e−λn/2 + Te−λn/T 2 ≤ �T + 1�e−λn/T 2

for T ≥ 3.
Therefore, the probability that either of properties 1 or 2 fails to hold is

at most

�T + 1�e−λn/T 2 + 1− BTr :
If this quantity is strictly less than 1, then there must exist at least one
matrix M for which both properties 1 and 2 hold. This will be the case if
and only if

λ >
T 2

n
�T ln�1/Br� + ln�T + 1�� : (14)

Therefore, to complete the proof, we need only prove Eq. (14) by lower
bounding λ.

We have that

λ = Pr
[
W �i� · T ≤ Tu− 1

]
≥ Pr

[
W �i� · T = �Tu− 1�]

≥ 1
T + 1

exp �−T ·RE ��Tu− 1� /T �u+ ε��

≥ 1
T + 1

exp �−T ·RE �u− 2/T �u+ ε�� :
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The second inequality follows from Cover and Thomas (1991, Theo-
rem 12.1.4).

By straightforward algebra,

T ·RE �u− 2/T �u+ ε� = T · �RE �u �u+ ε� −RE �u �u− 2/T ��

+2 ln
(

1− u+ 2/T
1− u− ε ·

u+ ε
u− 2/T

)
≤ T ·RE �u �u+ ε� + C

for T sufficiently large, where C is the constant

C = 2 ln
(

1− u/2
1− u− ε ·

u+ ε
u/2

)
:

Thus,

λ ≥ e−C

T + 1
exp �−T ·RE �u �u+ ε�� ;

and therefore, Eq. (14) holds if

T ·RE �u �u+ ε� < ln n− C − ln
(
T 2�T + 1��T ln�1/Br� + ln�T + 1��) :

By our choice of T , we have that the left-hand side of this inequality is
at most ln n − 5 ln ln n, and the right-hand side is ln n − �4 + o�1�� ln ln n.
Therefore, the inequality holds for n sufficiently large.

APPENDIX: PROOF OF LEMMA 12

Let

Y =
∑n
i=1 αiXi − r√∑n

i=1 α
2
i

:

Our goal is to derive a lower bound on Pr�Y ≥ 0�. Let s = r�1− r�. It can
be easily verified that EY = 0 and VarY = s. In addition, by Hoeffding’s
inequality (1963), it can be shown that, for all ε > 0,

Pr�Y ≥ ε� ≤ e−2ε2
; (15)

and

Pr�Y ≤ −ε� ≤ e−2ε2
:

For x ∈ �, let D�x� = Pr�Y = x�. Throughout this proof, we use
∑
x to

denote summation over a finite set of x’s which includes all x for which
D�x� > 0. Restricted summations (such as

∑
x>0) are defined analogously.
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Let d > 0 be any number. We define the following quantities:

G = ∑
0<x<d

D�x�

R = − ∑
−d<x<0

xD�x�

E1 =
∑
x≥d

xD�x�

E2 =
∑
x≤−d

x2D�x�

E3 =
∑
x≥d

x2D�x�:

We prove the lemma by deriving a lower bound on G ≤ Pr�Y ≥ 0�.
The expected value of Y is

0 = EY =∑
x

xD�x�

= ∑
x≤−d

xD�x� + ∑
−d<x<0

xD�x� + ∑
0<x<d

xD�x� +∑
x≥d

xD�x�

≤ 0− R+ dG+ E1:

Thus,

R ≤ dG+ E1: (16)

Next, we have that

s = VarY =∑
x

x2D�x�

= ∑
x≤−d

x2D�x� + ∑
−d<x<0

x2D�x� + ∑
0<x<d

x2D�x� +∑
x≥d

x2D�x�

≤ E2 + dR+ d2G+ E3:

Combined with Eq. (16), it follows that

s ≤ 2d2G+ dE1 + E2 + E3: (17)

We next upper bound E1, E2; and E3. This allows us to immediately
lower bound G using Eq. (17). To bound E1, note that

dE1 = d
∑
x≥d

xD�x� ≤ ∑
x≥d

x2D�x� = E3: (18)

To bound E3, let d = y0 < y1 < · · · < ym be a sequence of numbers
such that if D�x� > 0 and x ≥ d then x = yi for some i. In other words,
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every x ≥ d with positive probability is represented by some yi. Let S�y� =∑
x≥y D�x�. By Eq. (15), S�y� ≤ e−2y2

for y > 0. We can compute E3 as

E3 =
∑
x≥d

x2D�x� =
m∑
i=0

y2
i D�yi�

= y2
0

m∑
j=0

D�yj� +
m−1∑
i=0

[(
y2
i+1 − y2

i

) m∑
j=i+1

D�yj�
]

= y2
0S�y0� +

m−1∑
i=0

(
y2
i+1 − y2

i

)
S�yi+1�

≤ d2e−2d2 +
m−1∑
i=0

(
y2
i+1 − y2

i

)
e−2y2

i+1 :

To bound the summation, note that

m−1∑
i=0

(
y2
i+1 − y2

i

)
e−2y2

i+1 =
m−1∑
i=0

∫ yi+1

yi

2xe−2y2
i+1 dx

≤
m−1∑
i=0

∫ yi+1

yi

2xe−2x2
dx

=
∫ ym
y0

2xe−2x2
dx

= 1
2

(
e−2y2

0 − e−2y2
m
) ≤ 1

2e
−2d2

:

Thus, E3 ≤ �d2 + 1/2�e−2d2
. A bound on E2 follows by symmetry.

Combining with Eqs. (17) and (18), we have

s ≤ 2d2G+ 3�d2 + 1/2�e−2d2
;

and so

Pr�Y ≥ 0� ≥ G ≥ s − 3�d2 + 1/2�e−2d2

2d2 :

Since this holds for all d, we have that Pr�Y ≥ 0� ≥ Br where

Br = sup
d>0

s − 3�d2 + 1/2�e−2d2

2d2 ;

and s = r�1 − r�. This number is clearly positive since the numerator of
the inside expression can be made positive by choosing d sufficiently large.
(For instance, it can be shown that this expression is positive when we set
d = √1/s.)
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