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In this paper, we study the sample complexity of weak learning.
That is, we ask how many data must be collected from an unknown dis-
tribution in order to extract a small but significant advantage in predic-
tion. We show that it is important to distinguish between those learning
algorithms that output deterministic hypotheses and those that output
randomized hypotheses. We prove that in the weak learning model, any
algorithm using deterministic hypotheses to weakly learn a class of
Vapnik-Chervonenkis dimension d{n) requires Q(\/d(n)) examples.
In contrast, when randomized hypotheses are allowed, we show that
0(1) examples suffice in some cases. We then show that there exists an
efficient algorithm using deterministic hypotheses that weakly learns
against any distribution on a set of size d{n) with only O{d{n)??)
examples. Thus for the class of symmetric Boolean functions over n
variables, where the strong learning sample complexity is @(n), the
sample complexity for weak learning using deterministic hypotheses is
Q(\/I;) and O(n?3), and the sample complexity for weak learning
using randomized hypotheses is @(1). Next we prove the existence of
classes for which the distribution-free sample size required to obtain a
slight advantage in prediction over random guessing is essentially equal
to that required to obtain arbitrary accuracy. Finally, for a class of small
circuits, namely all parity functions of subsets of n Boolean variables,
we prove a weak learning sample complexity of @(n). This bound holds
even if the weak learning algorithm is allowed to replace random
sampling with membership queries, and the target distribution is
uniform an {0, 1}", € 1995 Academic Press, Inc.

1. INTRODUCTION

In this paper, we study the sample complexity of weak
learning. More precisely, we are interested in the number
of examples required for the distribution-free learning of

* Most of this research was carried out whtle all three authors were at
the MIT Laboratory for Computer Science with support provided by ARO
Grant DAALO3-86-K-0171, DARPA Contract N00014-89-J-1988, NSF
Grant CCR-88914428, and a grant from the Siemens Corporation. S.
Goldman also received support from a G.E. Foundation Junior Faculty
Grant and NSF Grant CCR-9110108.

276

a parameterized concept class C over {0, 1}” when the
hypothesis output by the learning algorithm need only have
accuracy 1/2 + 1/p(n) for some polynomial p(»n). Thus, the
hypothesis must perform only slightly better than random
guessing. Viewed more fundamentally, we are asking how
much data must be collected from an unknown distribution
in order to extract a small but significant advantage
in prediction. This weak learning model is derived from
the distribution-free “probably approximately correct” (or
PAC) model introduced by Valiant, in which the learning
algorithm must output a hypothesis with accuracy 1 — ¢ for
any small 0 < ¢ < 1/2. We refer to Valiant’s original model as
strong learning.

Our motivation for studying the sample complexity of
weak learning comes from several sources. First, in the
strong learning model it is assumed that learning algorithms
have access to an unlimited supply of labeled examples
drawn according to the unknown target distribution. Given
this unlimited supply of examples, the goal of a learning
algorithm is to discover almost a/l information about the
target concept with respect to the target distribution (ie., to
be able to correctly classify all but a fraction ¢ of the
examples with respect to the target distribution). While
much of the research in the strong learning model has aimed
at achieving this goal in polynomial time, many results have
addressed the question of the number of examples required.

In practice, however, we often find that there 1s a limited
supply of examples. Research involving archeological
evidence or protein sequences is typical of settings in which
the available data are severely limited. Furthermore, in such
settings one rarely expects to obtain a highly accurate
theory explaining all the evidence; indeed, a theory that
provides even the slightest bias may provide valuable
clues and guidance for further investigations. Thus we are
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motivated to ask, what is the minimum number of examples
required to obtain some nformation about the target
concept? An understanding of weak learning sample
complexity may be important in applications in which the
number of available examples falls short of the number
required to obtain overwhelming accuracy in prediction,
but suffices to obtain a significant advantage over guessing.

A second motivation for our study is the result of
Schapire [15] showing that a concept class is weakly
learnable in polynomial time if and only if it is strongly
learnable in polynomial time. Is there a polynomial relation
between the sample sizes of weak and strong learning when
there are no restrictions on the computational complexity?
Some of our results give a negative answer to this question,
and we investigate conditions under which the weak
learning sample complexity is significantly smaller than the
strong learning sample complexity.

A third motivation is that the nature of the weak learning
model forces us to find distributions with large support sets
in order to prove good lower bounds on sample size. One
objection to the sample size lower bounds in the strong
learning model is that these bounds are typically obtained
for a distribution over a small support set. Since, as our
results will show, such lower bounds break down for the
weak learning model, we must look for hard distributions
over large support sets, such as the uniform distribution.
In addition to involving what are perhaps more natural
distributions, these results may be of some interest to
researchers in cryptography, where one is often interested in
functions that are unpredictable (in the weak learning
sense) on the uniform distribution. Whereas cryptography
has been primarily and naturally interested in functions that
are unpredictable in a computationally bounded setting
(such as quadratic residues), some of our results may be
interpreted as an investigation of this same problem in an
information-theoretic setting.

We now give a summary of our results. Although our
lower bounds on weak learning sample size are information-
theoretic (that is, they hold regardless of computation
time), we are primarily concerned with polynomial-time
learning, and all example-efficient algorithms we give run in
polynomial time. We begin by observing that if the Vapnik—
Chervonenkis dimension of a concept class C, is super-
polynomial in n, then the lower bound proofs for the strong
learning model [2] are easily adapted to give super-
polynomial lower bounds on the sample size required for
weak learning. Thus, we focus on classes C,, whose Vapnik~
Chervonenkis dimension is polynomial in .

We note that the sample size lower bound for the strong
learning model breaks down for the weak learning model:
namely, if a class C, has Vapnik—Chervonenkis dimension
polynomial in #, and the target distribution is uniform
over a shattered set, then one example suffices to obtain a
weak learning hypothesis. The hypothesis uses the obvious
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technique of correctly classifying the known point, and
flipping a coin for the classification of any other point. This
simple hypothesis is randomized (this should not be con-
fused with the learning algorithm itself being randomized,
which we always assume may be the case).

This example raises the natural question of the relative
power of deterministic hypotheses and randomized hypo-
theses. In the strong learning model, the sample size
lower bounds hold regardless of whether the hypothesis is
deterministic or randomized. However, we show that in the
weak learning model it is important to distinguish between
those learning algorithms that output deterministic
hypotheses and those that output randomized hypotheses.
Namely, we prove that in the weak learning model, any
algorithm using deterministic hypotheses to learn a class of
Vapnik-Chervonenkis dimension d(n) requires (./d(n))
examples; the hard distribution is again uniform over a
shattered set. We then give an efficient algorithm using
deterministic hypotheses that weakly learns against any dis-
tribution on a shattered set (or more generally, any distribu-
tion on any set of size d(#), which we assume is polynomial
in n) with only O(d(n)*?) examples. This is a provable
decrease from the number of examples required for strong
learning against the same class of distributions. The algo-
rithm uses a simple sampling technique for converting any
weak learning algorithm using randomized hypotheses into
one using deterministic hypotheses.

Furthermore, for some classes, such as symmetric
functions over {0, 1}”, any distribution can be reduced to a
distribution over a shattered set. Thus, for symmetric func-
tions we obtain an interesting separation of the sample sizes
required in the various distribution-free settings: the strong
learning sample size is @(n), the sample size required for
weak learning with deterministic hypotheses is £( \/; ) and
O(n*"?), and the sample size required for weak learning with
randomized hypotheses is @(1). These bounds are given for
fixed ¢ and ¢; the dependence on these parameters is
described in the technical sections.

These results show that the sample complexity for weak
learning may be considerably smaller than for strong
learning, and that the power of using randomized hypo-
theses for weak learning may be dramatic. The results so far
leave open the possibility that any concept class of poly-
nomial Vapnik-Chervonenkis dimension can be weakly
learned using randomized hypotheses with only a constant
number of examples (for fixed J).

We show that this is not the case by proving the existence
of classes C, whose Vapnik-Chervonenkis dimension is
©(n) and whose weak learning sample complexity is &(n)
(regardless of the hypotheses used). In contrast to the
results described above, this shows that there are classes for
which the distribution-free sample size required to obtain a
slight advantage in prediction over random guessing is
essentially the same as that required to obtain arbitrary
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accuracy. However, we use a probabilistic construction
to obtain this result, and the resulting class C,, while
having small Vapnik—Chervonenkis dimension, cannot be
described using small (size polynomial in ») circuits, and
thus is not learnable in polynomial time by results of
Schapire [ 15]. Are there classes of small circuits, learnable
in polynomial time, whose weak learning sample com-
plexity is as large as their strong learning sample
complexity?

By defining a combinatorial property of concept classes
that is sufficient to imply large weak learning sample com-
plexity, and then demonstrating a class of small circuits
possessing this property, we are able to answer this question
in the affirmative. The class of circuits is simply all parity
functions of subsets of » Boolean variables, which we prove
has weak learning sample complexity @(n). We show that
this holds even if the weak learning algorithm is allowed to
choose the examples itself (that is, the learning algorithm
may replace random sampling with membership queries),
and the target distribution is uniform.

The sufficient property used is a first step towards
characterizing weak learning sample complexity in the
same way that the Vapnik—Chervonenkis dimension gives a
combinatorial characterization of strong learning sample
complexity. A necessary and sufficient characterization of
weak learning sample complexity remains an interesting
open problem.

2. DEFINITIONS

We begin by describing the distribution-free learning
model introduced by Valiant [ 17]. The learner is attempting
to infer an unknown target concept ¢ chosen from some
known concept class C. In this paper, we concentrate on
Boolean functions. In this context, C={J,.,C, is para-
meterized by the number of variables n, and each ce C,,is a
subset of the domain {0, 1}". The learner is given access to
labeled (positive and negative) examples of the target
concept, drawn randomly according to some unknown
target distribution D over {0, 1}". The learner is also given
as input 0 <g, 0 < 1. The learner’s goal is to output, with
probability at least 1 — &, a Aypothesis h that has probability
at most ¢ of disagreeing with ¢ on a randomly drawn
example from D (thus, the hypothesis has accuracy at least
1 —¢, or is &-good). If such a learning algorithm A exists
(that is, an algorithm A meeting the goal for any n > 1, any
target concept ce C,, any target distribution D, and any
&, &), we say that C is strongly learnable in the distribution-
-free model. In this setting polynomial time means polyno-
mial in #, 1/¢, and 1/3. The support set of a distribution D is
the set of all x such that D(x)> 0.

In the related weak learning model [13], we drop
the demand for accuracy 1 —e& and simply ask that the
hypothesis 4 have accuracy at least 1/2 4+ 1/p(n) for some
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polynomial p(n). Thus we ask only for a small correlation in
the underlying distribution. In this setting polynomial time
means polynomial in » and 1/3. The weak sample complexity
for a parameterized concept class C is a function of » and &
that denotes the minimum number of examples required to
weakly learn any ce C,,.

We will see shortly that it is important to distinguish
between the cases where the learming algorithm A outputs
deterministic and randomized hypotheses. This should not
be confused with the learning algorithm itself, which we
always assume may be randomized. A deterministic
hypothesis over {0, 1}” is a function A: {0, 1}"— {0, 1}.
A randomized hypothesis over {0,1}" is a function
h:{0,1}7"x {0, 1} — {0, 1}, where g(n) is some fixed
polynomial. On input xe{0,1}", the randomized
hypothesis 4 is evaluated by choosing a random string
re {0, 1}9" uniformly and then computing A(x, r). Here,
the accuracy of 4 with respect to the target distribution is
the probability of agreement with the target, where the
probability i1s now taken over both the random draw of
x€ {0, 1}" according to D and the random string r.

We also need the following definitions. A finite set
Y< {0, 1}" is shartered by C, if we have {cn Y |ceC,}
=27". The Vapnik—-Chervonenkis dimension of C,, denoted
vep(C, ), is defined to be the largest d such that some set of
cardinality d is shattered by C,,.

Finally, to compute the sample sizes needed for several of
our algorithms we use the following versions of Chernoff
bounds. The first two bounds stated, Hoeffding’s inequality
[ 117, are most useful when p is close to 1/2. However, when
p<1/4 the last two bounds as stated by Angluin and
Valiant [ 1] give better bounds. (See also Chernoff [ 3], and
Erdos and Spencer [5].)

LEmMA 1 (Chernoff Bounds). Let X,,... X, be a
sequence of m independent Bernoulli trials, each succeeding
with probability p. Let S=X,+ - - - + X,, be the random
variable describing the toral number of successes. Then for
0 <y <1, the following inequalities hold:

Pr(S<(p—y)m]<e
PrS=(p+y)m]<e ¥
PrS<mp(l —y)]<e 72

Pr[S>mp(l+y)]<e A

3. PREVIOUS WORK

In the strong learning model, a major contribution to the
understanding of sample complexity was made by Blumer ez
al. [2]. Building on the work of Vapnik and Chervonenkis
[ 18], they proved that the number of examples required for
strongly learning a concept class C, is 2(vcp(C,,))
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(ignoring dependence on & and &). Furthermore, they
prove that the general technique of finding a consistent
hypothesis, when feasible, always results in a (possibly super-
polynomial time) learning algorithm using O(vcp(C,))
examples. Thus, for strong learning the sample complexity
is characterized by the Vapnik—Chervonenkis dimension.

In the weak learning model there are no previous lower
bounds on sample size. Upper bounds are provided by
results in the strong learning model. In addition, Helmbold
and Warmuth [12] have recently derived a number of
sufficient conditions for weak learning, some of which yield
more refined upper bounds.

In the case that vep(C,, ) 1s super-polynomial in #, it is
easy to adapt the lower bound of Blumer e? a!. to give super-
polynomial lower bounds on the sample size for weak
learning (a fact that also follows from Theorem 2 below).
Since we are primarily concerned with classes learnable
from a polynomial number of examples in polynomial time,
we restrict our attention to classes with dimension polyno-
mial in .

4. SIMPLE BOUNDS

In this section we look at two initial results on the
sample complexity of weak learning. In the polynomial-time
setting, Schapire [ 15] proved that a concept class C can be
weakly learned in polynomial time if and only if it can be
strongly learned in polynomial time. More precisely, he
gives an efficient strong learning algorithm for C that uses
an efficient weak learning algorithm for C as a subroutine.
Subsequently, Freund [ 7, 8] has given a different technique
for converting a weak learning algorithm into a strong
learning algorithm. Combining this result with the lower
bound provided by Blumer er al, one obtains an initial
lower bound on weak learning sample complexity. This
bound does not give an unconditional lower bound on the
sample size required by any weak learning algorithm, but
instead describes a tradeoff between the advantage obtained
and the number of examples required.

THEOREM 2. Letr C be a parametrized concept class, let
p(n) be a polynomial, and let d(n)=vcD(C,). Then any
deterministic weak learning algorithm that outputs deter-
ministic hypotheses of accuracyl/2 + 1/p(n) must use

i)
(n)*(log d(n))*

examples whenever & < 1.

Proof. We prove this result by showing that a weak
learning algorithm that violates this lower bound can
be used to compress data beyond what is information-
theoretically possible.
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Fix d <1 and let 4 be a weak learning algorithm that
outputs (1/2 —1/p(n))-good hypotheses with probability
1 —d>0, and that requires m(n) examples. We run algo-
rithm A repeatedly, each time drawing a fresh sample of
m(n) examples until at last a (1/2 — 1/p(n))-good hypothesis
is found. (If § is very close to 1, this may take a very
long time. However, our only concern at this point is in
demonstrating the existence of a small weak hypothesis,
regardless of the time needed to compute it.) Note that this
final hypothesis can be encoded by the m(#n) examples on
which A4 was successfully trained. Under this encoding, the
size s{(n) of the output hypothesis in bits is m(n) times the
number of bits needed to encode each example.

Schapire [ 15] and Freund [ 7, 8] describe techniques for
converting this weak learning algorithm into a strong
learning algorithm A4’ outputting hypotheses of size

O(s(n) - (p(n))*- (log (1/¢))”) (1)
for some constants o« and f. If A’ is run against a uniform
distribtion over a shattered set of size d(n) with ¢ <d(n),
then the output hypothesis consistent with the sample with
high probability. Since each example in the shattered set can
be encoded by O(log d(n)) bits it follows from the above
that s(r)= O(m(n)logd(n)). Substituting this bound as
well as the bound 1/e = O(d(n)) into Eq. (1) we see that the
size of the hypotheses output by 4’ is O(m(n)-(p(n))*-
(logd(n))’*'). Finally, since all 24" labelings of the
instances in the shattered set are possible, it is clear that at
least d(n) bits are needed to encode these labelings, and thus
d(n) lower bounds the size of the hypothesis output by 4.
Thus,

d(n)y=O0(m(n)-(p(n))*- (logd(n))**+").

Since, in Freund’s construction, a =2 and f =1, the stated
lower bound on m(n) follows. ||

We now demonstrate that for concept classes with
polynomial Vapnik—Chervonenkis dimension, the lower
bound of Blumer et a/. [2] breaks down in the weak
learning model. 'If vcp(C,) is polynomial in »n and the
target distribution is over a shattered set, then O(log (1/5))
examples suffice for weak learning.

THEOREM 3. Let C be a paramertrized concept class
and let p(n) be a polynomial. Then there exists an algorithm
outputting a randomized hypothesis with accuracy 1/2 +
I/p(n) on any target distribution with a support set of
cardinality d(n); the number of examples required is

d(n)
O —+1 1/6) ).
(p(n)+ og (1/ )>
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Proof. The algorithm draws enough points so the
weight of the points in the sample cover at least a fraction
f# of the distribution. The output hypothesis 4 correctly
classifies the seen points, and flips a fair coin elsewhere.
(Note that only one random bit is needed for this purpose.)
Thus the error of 4 is at most (1 — f)/2. To insure that the
error is at most 1/2 — 1/p(n), it suffices to select f=2/p(n).

We use Hoeflding’s inequality to prove that a sample of
size O(fd(n) + log (1/5)) covers a fraction f of the distribu-
tion with probability at least 1 — 4. Since we have shown
that §=2/p(n) suffices, without loss of generality assume
that f<1/3. If at least 1/3 of the distribution is covered,
then we are done. Suppose instead that less than 1/3 of the
distribution has been covered. Thus when drawing a new
example x from D:

1. Pr[xis already covered ] < 1/3.
/3

2. Pr[xis new point with weight < 1/3d(n) l
1/3

1<1/3.
3. Pr[xis new point with weight = 1/3d(n)] = 1/3.
We say that a trial is successful if x is a new point with
weight at least 1/3d(n). Thus after 3d(n) § successful trials
a fraction f of the distribution will be covered. Using
Hoeffding’s inequality with p =1/3 and y = 1/6 it can easily
be shown that a sample of size max{18d(n) f, 18 In 1/3} is
sufficient to ensure that with probability 1 — & the number of
successful trials is at least 3d(n) B. Finally, substituting
2/p(n) for B gives the desired result. ||
By setting p(n) = d(n) = vep(C,) in Theorem 3 we
obtain:

CoroLLARY 4. Ler C be a parametrized concept class
over {0, 1}" for which vep(C,) is polynomial in n. Then there
exists an algorithm outputting a randomized hypothesis that
weakly learns C,, on any distribution over a set of cardinality
ve(C),); the number of examples required is O(log (1/6)).

Thus, for fixed &, O(1) examples suffice for weak learning
against target distributions over small support sets; this
should be contrasted with the lower bound of Q(vcp(C,))
for the same class of distributions in the strong learning
model [ 2]. In Section 6 we show that for the weak learning
model, randomized hypotheses are necessary to obtain such
significant decreases in sample complexity.

5. REMOVING RANDOMNESS FROM HYPOTHESES

In this section we give a sampling technique for converting
randomized hypotheses into deterministic hypotheses in
both the strong and weak learning models. If computation
time is not a concern, then in the strong learning model
randomized and deterministic hypothesis classes give essen-
tially the same power with respect to sample complexity
(this follows from the results of Blumer et al.). We extend
this result to hold even when considering computation
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time: we describe a technique to efficiently convert any
randomized hypothesis into a deterministic hypothesis
using O((1/¢) log(1/9)) additional examples.

We use the following definitions in the next two theorems.
Given a randomized hypothesis A, let h(x.r) be the
prediction made by & on instance x with random bits r.
We define the error of # on random bits » as e,(r)=
Pr . [#A(x, r) # ¢(x)] where ¢(x) is the correct classification
for x. Likewise for a deterministic hypothesis / and a sample
S drawn randomly from D, let ¢, =Pr [h(x)# c(x)] and
let é,(.5) denote the estimated error of hypothesis /1 based
on sample S. That is, é,(S)=(number of misclassified
examples from S)/|S].

(Here and below, we subscript the probability notation
Pr[ -] to indicate explicitly the variables whose values are
chosen at random. Similarly, the expectation notation EJ - ]
may be subscripted for the same purpose.)

THEOREM 5. Let A be a strong learning algorithm for a
parameterized class C that outputs a randomized hypothesis
and requires m(n, €, 6) examples. Then there exists a strong
learning algorithm A’ for C that outputs a deterministic
hypothesis and requires

o <m(n, £ 0) +;log( l/é))

examples.

Proof. We begin by running algorithm A4 (with para-
meters /4 and J/2) once to obtain a single randomized
hypothesis /# that with probability at least 1 — &/2, has error
at most ¢/4. It is easily shown that

Pr. [h(x,r)#cx)]=E,[e,(r)] < ’

+ |

Let g=Pr,[e,(r)=¢/2]. Since E,[e,(r)] = &q/2 it follows
that ¢ < 1/2 and thus

Pr,[e,,(r)<§J >1/2. (2)

We are now ready to describe the technique for converting
the randomized hypothesis into a deterministic one. We
choose ¢ random strings 7, ..., r, to obtain t deterministic
hypotheses h;=h( -, r;). It follows from Eq. (2) that

Pr | all A,’s have error > %} <27

So for ¢ =1g{6/9), with probability at least 1 — /6 at least
one of the 4,’s will have error at most &/2.

Next we use hypothesis testing (as described by Haussler
et al. [9]) to estimate the error of each hypothesis and out-
put the one with the lowest error. For hypothesis 4,,if e, > ¢
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then Chernoff bounds can be used to show that if a sample
S of size (8/¢) In(61/5) is drawn then Pr[é, (S) <¢/2] <d/61.
Since at most 7 such estimates are made, with probability at
least 1 — 4/6, for any hypothesis &, with e, > ¢, the estimated
error é, (S) > ¢/2.

Likewise, Chernoff bounds can be used to show that if a
sample S of size (12/¢) In(61/5) is drawn then with probability
1 —6/6, for any hypothesis h; with e, <e¢/4, the estimated
error é, (S) <&/2. Thus by drawing an additional sample of
S1Z¢

212t 12 12 6 1 1
—In—=—(ln—=+Inlg=)=0(-log=
¢ In ) S<n6+ng(5> <£ og(5>

we can ensure with probability at least 1 —¢ that the
hypothesis output by 4" has error at most . ||

Thus for the case of strong learning the distinction
between deterministic and randomized hypothesis spaces is
not significant. Next we give a similar conversion for the
weak learning model, but the increase in sample complexity
is now significant. This result will be used in the next section
to obtain improved sample sizes for weak learning with
deterministic hypotheses.

THEOREM 6. Let C be a parametrized concept class and
let p(n) be a polynomial. Let A be a weak learning algorithm
Jor C that owputs a randomized hypothesis of accuracy
1/2 + 1/p(n) and that requires m(n, 8) examples. Then there
exists a weak learning algorithm A’ for C that outputs
a deterministic hypothesis and that requires O(m(n, )+
p(n)? log(p(n)/d)) examples.

Proof. As in the proof of Theorem 5 we begin by
running algorithm A4 once to obtain a single randomized
hypothesis 4 that, with probability at least 1 — §/2, has error
at most 1/2 — 1/p(n). It is easily shown that

1

Pr. [hlx,ry#c(x)]=E,[e,r)] < -
p(n)

tI -

Let ¢g=Pr,[e,(r1=1/2—-1/(2p(n))]. Since

= q(1/2—1/(2p(n))) it follows that

Er[‘)h(r)]

1 1 1
_ > R
2p(n) pn)—1

Pr,| e,(r) (3)

s —
2
As in the proof of Theorem 5, to convert the randomized

hypothesis into a deterministic one, we choose ¢ random

strings ry, .., r, to obtain ¢ deterministic hypotheses 4, =

A(-,r;). Using Eq. (3) it is easily shown that for =

(p(n)—1)1In(6/9), with probability at least 1 —J/6, at least

one of the A,’s will have error at most 1/2 — 1/(2p(n)).
Finally, we use hypothesis testing to accurately estimate

the error of each hypothesis and output the one with the
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lowest error. We want to draw enough examples so that the
following two requirements are met for all 4,’s:

1. If e, = 1/2 — 1/(4p(n)),
1/(2p(n))] < d/61.

2 I e, < 1/2— Lipin)),
1/(2p(n))] < /6.

then Pr[é,(S)<1/2—

then Pr[é,(S)>1/2—

Using Hoeffding’s inequality it can be shown that
drawing a sample of size 8p(n)* In 6¢/6 is sufficient to ensure
that with probability | — d/6, the first requirement is met for
all h;’s. Likewise, by drawing a sample of size 2p(7)? In 61/8,
we can ensure that with probability 1 —4J/6 the second
requirement holds for all A,’s. Thus an additional sample of
size

61 , 6
8p(n)? In 5= 8p(n)- <1n 5+ In(p(ny—1)+Inln §>

pim)
1)

is sufficiently large so that with probability at least 1 — & the
hypothesis output by A’ has error at most 1/2 — 1/(4p(n)). 1

=0 <p(n)3log

Often, when designing an algorithm with a randomized
hypothesis, only a single random bit is needed. This
was seen, for example in the proof of Theorem 3. If the
hypothesis output by 4 only requires a constant number of
random bits, then only a constant number of hypotheses
need to be generated. Thus in the proof of Theorem 6,
t = O(1), giving the following corollary.

CorOLLARY 7. Let C be a parametrized concept class
and let p(n) be a polynomial. Let A be a weak learning algo-
rithm for C that outputs a randomized hypothesis of accuracy
1/2+ 1/p(n) and that requires m(n, §) examples. Further-
niore, suppose that h requires a constant mumber of random
bits. Then there exists a weak learning algorithm A' for C
that outputs a deterministic hypothesis and that requires
O(m(n, 8) + p(n)* log(1/8)) examples.

6. DETERMINISTIC HYPOTHESES FOR
WEAK LEARNING

In this section we consider the weak sample complexity
when using deterministic hypotheses. We begin by showing
that any weak learning algorithm for a parameterized
concept class C using deterministic hypotheses requires

Q(/ven(C,,)) examples.

THEOREM 8. Let C be a parametrized concept class. Then
the sample size required for weakly learning C,, using deter-
ministic hypotheses is £ \/ ven(C,)) for any 6 <6, where
0<d,< 1 is aconstant.
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Proof. Letd(n)=vcD(C,), and let A be a weak learning
algorithm for C that outputs a deterministic hypothesis. For
each ce C,, let the target distribution D be uniform over a
shattered set T of size d(n). Let C,, = C, be such that C,
shatters T and |C,|=2“" (thus, there is exactly one
concept in C’ for each induced labeling of T).

Consider the following experiment: first the target
concept ¢ is chosen uniformly at random from C;,. Then a
sample S of \/d(n) points labeled according to ¢ 1s chosen
from the target distribution D and is given to 4. The out-
come of the experiment is the accuracy of the deterministic
hypothesis output by 4.

This experiment is easily seen to be equivalent to the
following one: First a sample S of \/d(n) points is chosen
randomly from 7 and is randomly labeled. Then the target
¢ is chosen randomly among all concepts in " consistent
with the chosen labeling. Then the labeled sample is given to
A, and the accuracy of the hypothesis output by A4 is
measured. Now since the hypothesis of 4 is chosen inde-
pendently from the random choice of ¢, this experiment
is equivalent to the following: First a sample S of ,/d(n)
points is chosen randomly from 7 and 1s randomly labeled.
Then the labeled sample S is given to A, and the deter-
ministic hypothesis / of 4 1s obtained. Then a target concept
¢ is chosen randomly from among all concepts in C), consis-
tent with S.

We assume, without loss of generality, that # makes no
errors on the \/ d(n) points in the sample S. It can be seen
that the accuracy of h on D exceeds 1/2 only if 4 is incorrect
on at most d(n)/2 of the d(n)—\/m points of T—S.
However, we may regard the random draw of ¢ in the
third description of the experiment above as a sequence of
unbiased coin flips, since each possible labeling of the points
in T—S 1is represented exactly once in C,. But the
probability that at least d{#)/2 tails occur in a sequence of
d(n)— . /d(n) coin flips is at least J, for some constant
0<dy<1 (for example, see Feller [6]). Letting tails
represent points in 7—S on which £ is incorrect, and
applying an averaging argument, we see that there must
exist some c € ), for which 4 has probability at least §, of
failing to output a hypothesis of accuracy 1/2on D. |

We now show that for fixed &, the bound of Theorem 8 is
tight on the uniform distribution over a shattered set. Thus
if the result of Theorem 8 i1s to be improved, a different
distribution must be used.

THEOREM 9. Let C be a parametrized concept class, and
let d(n) be a polynomial. Then there exists an efficient
algorithm that weakly learns C, against the uniform distribu-
tion on any set of cardinality d(n); the number of examples

required is O(\/d(n) log(1/9) +log(1/d}).

Proof. The algorithm is simple. First draw a large
enough sample so that with probability at least 1 — J/2 this
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sample will include s(») distinct points from the support set.
Using Hoeffding’s inequality (as in the proof of Theorem 3)
it is easily shown that a sample of size O(s(n) + log(1/8)) is
sufficient to achieve this goal. The output hypothesis h will
be constructed as follows. For each point in the sample,
predict the known value. For all other points, the learning
algorithm flips a fair coin to select the classification.

Thus we only need to determine how large to make s(n)
so that the accuracy of the hypothesis is at least 1/2 + 1/d(n).
Let 2 denote the fraction of the d(n) — s(n) unseen instances
that are classified correctly by 4. Then, to achieve a 1/d(n)
advantage, we need that

sv(n)+ﬁ(d(n)—s(n))>1+ 1 .
d(n) 2 dn)

Solving for f gives the requirement that

) — o
/)’Zd“” ‘2s(n)+...
2(d(n) —s(ny)

Finally, we use Hoeffding’s inequality (with m = d(n) — s{n),
and p=1/2) to ensure that f is sufficiently large with
probability at least 1 — /2. This yields the following:

—(s{n)—2)*
exp {2(d<n) —s(nn} <9f2

Thus choosing s(n) =./2d(n) In(1/8) + 2 suffices. ]

We now wish to extend the upper bound of Theorem 9 to
hold for any distribution on a shattered set. This is obtained
by applying the conversion technique of Corollary 7 to the
example-efficient algorithm of Theorem 3. The result is an
efficient algorithm using deterministic hypotheses for learning
any concept class of polynomial Vapnik-Chervonenkis
dimension against any distribution on a set of size vep(C,,)
using O(ven(C, )** log(1/5)) examples:

THEOREM 10. Let C be a parametrized concept class such
that vep(C,, ) is polynomial in n. Then there exists an algo-
rithm using deterministic hypotheses for weakly learning C,
against any distribution over a set of size vcD(C,); the
number of examples required is O(veD(C, ) log(1/6)).

Proof. We apply the conversion technique of Corollary
7 to the algorithm of Theorem 3. In applying this conver-
sion we get an interesting trade-off between hypothesis
accuracy and sample complexity—the additional sample
complexity needed for the conversion is reduced as the
accuracy of the randomized hypothesis improves. Specifi-
cally, if d(n)=vcDp(C,) then a sample of size O(d(n)/p(n)
+ p(n)og (1/8)) is required to obtain a hypothesis with
accuracy 1/2+ 1/(4p(n)). Letting p(n) = d(n)'® we obtain
the desired result.
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Thus for any class C, of polynomial Vapnik-
Chervonenkis dimension, the strong learning sample com-
plexity and the sample complexity for weak learning with
deterministic hypotheses are always polynomially related;
this follows from the results of Blumer et al. and Theorem 8.
However, for any distribution on a set of size vep(C,, ), the
number of examples required for weakly learning C, with a
deterministic hypothesis is provably less than that required
for strong learning; this follows from Blumer et al
and Theorem 10. For weak learning with randomized
hypotheses, O(log (1/d)} examples suffice for any distribu-
tion on a set of size veD(C,), a provable and significant
decrease from the sample size for weak learning with deter-
ministic hypotheses and for strong learning. For some
classes of Boolean functions, such as symmetric functions,
any distribution reduces to a distribution on a shattered set
(symmetric functions are Boolean functions over {0, 1}”
whose output is invariant under all permutations of the
input bits, i.e., functions that depend only on the number of
I’s in the input vector). Thus for symmetric functions we
obtain a separation of the sample complexities for the
various models.

THEOREM 11. Let C be parametrized concept class of
symmetric Boolean functions, and let 0 <d < 1/2 be fixed.
Then the sample size required for strongly learning C, is
O(n), the sample size required for weakly learning C, with
deterministic hypotheses is Q{\/r;) and O(n**), and the
sample size required for weakly learning C, with randomized
hypotheses is O(1).

It is interesting to note that the algorithms for weak
learning with randomized hypotheses all use a method of
localization not available to a strong learning algorithm: a
small set of examples is used to classify some local region of
the domain. For symmetric functions, for instance, a single
vector v can be used to correctly classify all those vectors
with the same number of bits set to 1 as v. The hypothesis
output deterministically classifies this small region and flips
a fair coin elsewhere. Thus, the hypothesis space used is
actually considerably weaker in terms of representational
power than the true target class. This should be contrasted
with results showing that the computational complexity of
learning can sometimes be reduced by using a hypothesis
space that is more powerful than the target class (see for
example Pitt and Valiant [ 14]).

7. ALMOST EVERY CLASS HAS WEAK SAMPLE
COMPLEXITY Q(vd(C,))

We have seen that the power of using a randomized
hypothesis may be dramatic in some cases for weak learning
sample size. Our results thus far leave open the possibility
that every concept class C, over {0, 1}” such that vcp(C,,)
is polynomial in n can be weakly learned with only a constant

64311729
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number of examples (for fixed d). The next theorem shows
that this is not the case for almost every sufficiently large
concept class of polynomial dimension.

THEOREM 12. Let o> 1, let p(n)>an be bounded by a
polynomial, and let m(n) =|_p(n) — an_|. Then for sufficiently
large n, all but a vanishingly small fraction of concept classes
C, of cardinality 2°" have the following properties:

1. m(n)<veo(C,) < p(n), and

2. the number of examples required to weakly learning C,
(using either deterministic or randomized hypotheses) is at
least m(n).

Proof. The proofis a probabilistic construction showing
that, for sufficiently large n, a randomly chosen concept
class of cardinality 27" has the desired properties with
overwhelming probability. From this we conclude that
almost every sufficiently large concept class C, has the
desired properties. Note that a weak learning algorithm A
for C, is given access to a complete description (truth table)
of every concept in C,.. Thus the choice of a random target
class is only for the purposes of constructing C, in the proof;
algorithm A is not being given examples of a “random”
concept.

The class C, we construct will consist of 2’ randomly
chosen Boolean concepts on {0, 1}”. It follows immediately
that vep(C, ) < p(n), and from the proof of Lemma 13
below it will follow that vep(C,) = m(n).

Let m=m(n) and let p=p(n). Let S be any fixed set
of m arbitrarily labeled examples from {0, 1}"”. Now let
N=2"—m, and let T= {0, 1}" —S. We think of S as the
sample given to a learning algorithm, and T as those points
not seen by the algorithm. With respect to the N points in
T, any Boolean concept ¢ is represented by characteristic
vector v, e {0,1}" on the N-dimensional Boolean hyper-
cube and any randomized hypothesis /4 is represented by a
vector v, € [0, 117 in the N-dimensional real cube. In both
cases we regard the ith components (v_), and (v, ), as the
probability that 1 is output when the input is the ith point
of T. For the moment we are concerned only with behavior
on the set 7, and equate concepts and randomized
hypotheses over T with these characteristic vectors.

We now define a distance measure between concepts and
randomized hypotheses by

(vz' )1 -
N

X

(vh )II

dy(v,, v,)

It is easily verified that d,(v_, v,) is a metric and is in fact
the probability that the concept ¢ and the randomized
hypothesis # disagree with respect to the uniform distribu-
tion on 7.

The next lemma shows that no hypothesis can be a good
approximation of more than half of the concepts {0, 1}".
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Lemma 13, For any randomized hypothesis v, e [0, 1 ]7,
at most 1/2 of the v_€ {0, 1} ¥ satisfy dy(v.,v,)<1/2.

Proof. For any v.€{0, 1}, we have dy(v,, comp(v,))
=1 where comp(v,) denotes the complement of v.. Thus
dy(v,, v,)<1/2 implies d, (comp(v_), v, ) > 1/2, since d is
a metric. |

Thus if we draw a concept over T at random, the prob-
ability that / has accuracy more than 1/2 with respect to this
concept is at most 1/2. Using Chernoff bounds, it is easy to
show that if we draw many concepts at random, the fraction
of the concepts drawn for which 4 has accuracy more than
1/2 rapidly approaches some value bounded above by 1/2,
We want this statement to hold simultaneously for a/f ran-
domized hypotheses 4. This is exactly the approach taken in
our next lemma, which shows that with overwhelming prob-
ability, any fixed randomized hypothesis # has accuracy
significantly more than 1/2 (with respect to the uniform dis-
tribution over T) for at most half of all the concepts in C,,.

In the following lemma, it is assumed that C,, is generated
by choosing 27"’ random characteristic vectors from
{0, 1}%. Until now, we have implicitly restricted our atten-
tion to those concepts consistent with the fixed sample S.
Now that we are drawing all 2" labels for each concept at
random, we must explicitly state this restriction. Finally, we
sum the probability of failure over all choices for S.

LemMma 14, Fix 0 < f < 1/2, and let S be a labeled sample
of size m. Then the probability (over the random choice of the
class C,) that there exists v, € [0, 11" such that dy(v.,v,)
< 1/2—1/N for a fraction 1/2 + f of the v, e C, consistent
with S is at most 2=,

Proof. The probability that a randomly chosen concept
is consistent with the labeled sample S is clearly 2 =" Using
Chernoff bounds, it follows that the probability we fail to
get at lejast 2#=m=1 concepts consistent with S is at most

Let H be the collection of vectors v, [0, 1]", each of
whose components is an integral multiple of 1/N. That is,

H={{a,/N,..,ay/N>: a,,.,aye{0,1,.,N}}.

As mentioned above, we can use Chernoff bounds to
show that if we draw 22 ~" ! vectors from {0, 1}*, then
for a fixed vector v,e[0,1]" the probability that
dy(v,,v,)<1/2 for a fraction 1/2 + § of the v, drawn is at
most e ~ ¥ ~"# Therefore the probability that this should be
the case for any v, € H is at most

|H|e_2p—mﬂ2 — (N+ l)Ne __Zp—m/}: S 2"2ne 72;:—"1/;2'

Moreover, note that for any v, € [0, 117, there exists
v, € H for which dy(v,,v,)<1/N. Thus, if there is
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any v,e[0,1]" for which dy{v,,v.)<1/2—1/N, then
dy(v,, v.) <1/2 for the corresponding v, € H.

Since the probability that we fail to have 27~ ™!
concepts in C, consistent with S is at most ¢ 2 """, the
total probability that there exists a v, € [0, 1 ]V satisfying
the condition of this lemma is bounded above by

_ap-m-3 2 ap-mg2 _ (2w
e 4+ 2% L2

as claimed. |

To complete the proof of Theorem 12, we sum over all
possible choices of the labeled sample S of size m. The num-
ber of such samples is at most 2" **; thus the probability
{over the random choice of C, ) that there is some labeled
sample S of m points such that there exists v,e[0, 1]V
satisfying d (v, v, } < 1/2 — 1/N for a fraction 1/2 + f of the
concepts in v_e C, consistent with S is at most 277+~ %™
=272 From this we conclude that all but a vanishingly
small fraction of all concept classes C,, are such that for
any labeled sample S of m points, and any randomized
hypothesis A, h has error less than 1/2 — 1/N on at most
1/2 + f of the concepts in C,, consistent with S. By choosing
the target ce C, randomly from among all concepts
consistent with S, the desired bound is achieved by an
averaging argument. (See Lemma 15 below.) ||

In particular, Theorem 12 shows that if p(n) = w(n) then
almost all concept classes C, of cardinality 2" require
(1—0(1)) ven(C,,) examples to weakly learn. It is an
open question whether this leading constant of 1 can be
improved.

8. A SUFFICIENT CONDITION FOR LARGE WEAK
SAMPLE COMPLEXITY

We have now shown that there are classes C, such that
vep(C, ) = @(n) and 2(n) examples are required to weakly
learn C, (even using a randomized hypothesis space).
However, since the proof of Theorem 12 is non-constructive
in nature, so far we have no example of a class C, of small
(polynomial-size) circuits over {0, 1}” with an (vcp(C,))
weak learning sample size lower bound. Indeed, we do not
even have a non-constant lower bound for any such class.
Our goal now is twofold. First, we wish to extract a com-
binatorial property of concept classes from the proof of
Theorem 12 that is sufficient to imply an Q(vep(C,,)) lower
bound. Second, we wish to exhibit a class of small circuits
that has this property, and thus requires (vcp(C,))
examples to obtain even a small advantage over random
guessing.

Let C, be a concept class over {0, 1}". For any labeled
sample S, we define C,(S) to be the set of concepts in C,
consistent with S. If 4 is any randomized hypothesis
over {0,1}”, and p(n) is any polynomial, we denote by
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C,(S)[ A, p(n)] all concepts ce C,(S}) such that A is a
(1/2 —1/p(n))-good hypothesis for target concept ¢ with
respect to the uniform distribution over {0, 1}".

For any function #(n), we say that the parameterized
concept class C is #(n)-unapproximable if there exists some
constant d, >0 such that for any ce C,, for any labeled
sample S of ¢ consisting of at most 7(r) examples, and for
any randomized hypothesis # and polynomial p(»n), we have

|CA(S)LA, p(n) ]| <(1=60) - [C.(S)]

for sufficiently large n. In other words, a concept class is
t(n)-unapproximable if for every sample S of size #(n)
there exists no hypothesis /4 that weakly approximates a
fraction 1 — 4, of the concepts consistent with S. Note that
the proof of Theorem 12 shows implicitly that a randomly
selected concept class is £2(n)-unapproximable with high
probability.

LEMMA 15. Let C be a t(n)-unapproximable concept
class. Then t(n) examples are insufficient to weakly learn C,
when 8 <4, for some constant 6, >0, and for n sufficiently
large.

Proof. A probabilistic argument is used to prove this
lemma.

Let 6, > 0 witness that C, is t(n)-unapproximable, and
suppose for contradiction that there exists an algorithm A
that requires at most #(»n) examples to find a (1/2 — 1/p(n))-
good hypothesis with probability at least 1 —J,. Assume n
is sufficiently large.

Consider an experiment in which a target concept c is
chosen uniformly at random from C,, and A is trained on
¢ under a uniform distribution on the domain. By assump-
tion, A4 sees a sample S of cardinality at most #(n). Let h
be the hypothesis output by A. The chance that 4 is a
(1/2—1/p(n))-good hypothesis is equal to the probability
that ¢ is chosen in C,(S)[ A, p(n)], given that ¢ is chosen
from among the consistent concepts C,(S). Since ¢ was
selected uniformly at random, this probability is

G pta) 1]y
|G (S)

Thus, the probability (over random choices of ¢) that A4 fails
to output a (1/2 — 1/p(n))-good hypothesis is greater than
d,. Since this probability is the average failure probability of
A over random choices of ¢, it follows that there exists some
concept ¢ € C, for which the probability of failure exceeds
J,- This contradicts our assumption about 4. [

We note that Lemma 15 can be proved under weaker
versions of f(n)-unapproximability. For example, the lemma
still holds even if we modify #(n)-unapproximability to hold
only for most samples S of cardinality #(n).
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9. SMALL CIRCUITS WITH LARGE WEAK
SAMPLE COMPLEXITY

We turn next to the problem of finding a class of small
circuits with large weak sample complexity. In particular,
we show that the class of parity functions on » variables
is (n)-unapproximable. Specifically, let £, be the class
of concepts ¢ on domain {0,1}" of the form ¢(x)=
X; @ --- @x,.Thus, each concept is just the parity function
computed on a subset of zero or more of the n variables. It
is known that P, is learnable in polynomial time [ 10, 16].
It is not hard to show that vep(P, ) = n. Also, note that each
concept in P, can be represented by a vector in {0, 1}".
Each vector ce {0, 1} " is associated with the parity function
¢ defined by
=c-x=@ cx,.

i=1

o(x)

We use this vector representation throughout the following
proof.

THEOREM 16. Let a(n) be any function which a(n)=
wllog n). Then, for sufficiently large n, and for 6 <1/2, the
number of examples required to weakly learn P, (using either
deterministic or randomized hypotheses) is greater than
n—a(n).

Proof. From Lemma 15, it suffices to show that P, is
an-unapproximable. Consider a sample, S= {(x',¢,), ...
(x',£,)}, generated by some concept in P, where
t=|n—a(n) |. Let h be any randomized hypothesis. Then a
concept (represented as a vector) ¢ is consistent with S if
and only if ¢-x'=¢, for i=1, ..t Thus, the sample S
defines a system of  linear equations on » variables over the
field Z,; the solution space of that system of equations con-
sists exactly of those concepts consistent with S.

Let M be the ¢ x » matrix whose ith row is the vector x'.
Let r <t be the rank of M. Then, using standard linear
algebra techniques, it can be shown that r of the bits of ¢ can
be solved for in terms of the remaining bits. That is, by
possibly renaming variables, we may write

(=60 @ ayc

J=r+1

(4)

for i=1,..,r, and for some b,, a,e{0, 1} which can be
determined from M using Gaussian elimination. Put
another way, for every assignment to the bits ¢, |, ..., c,,
Eq. (4) gives an expression for the bits ¢, ..., ¢, with the
property that the resulting concept ¢ is consistent with .S.
Explicitly, this concept is defined by

xX)=P c;x;=DB bx,® D

c, <xj(-B @ a,,x,). (5)
i=1 i=1 Jj=r+1 i=1
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To complete the proof that P, is an-unapproximable, we
will show that every hypothesis A has accuracy less than

1 4 1 4

Stsmoasst
2 TS,

21 1 — 22

on over half of the consistent concepts. Consider an
experiment in which one of these consistent concepts is
chosen uniformly at random. Let ¢ be the random variable
representing this randomly chosen concept, and let e,
denote /’s error on ¢. Then

e.=E,[1h(x)—c(x)]]

where x is a vector chosen uniformly at random from
{0, 1}, and h(x) denotes the probability that # outputs 1 on
input x. For vector x, and r+ 1< <n, we write ¥, to

denote x, ® @ _, a,x,. Using this notation,

Ax)=@ bx,®& P X, (6)
i=1 J=r+1

We say that x is known if £, =0for all j (r + 1 < j < n) since
¢{x) can be determined in this case using Eq. (6).

Lemma 17. E [e ]z=1/2 12" 1
Proof. Wehave that E.[e.] =E [ d,], where

dy=E [h(x)—c(x)[].

Clearly, d, =0 for all x.

If x is not known, then ¥, =1 for some j and so Eq. (6)
implies that, for random ¢, ¢(x) =1 with probability 1/2.
Thus, d, = 1/2 in this case.

Since the probability that a randomly chosen vector x is
known is exactly 2~ ", it follows that

E[e. ]=E.[d]=81-2"""")

as claimed. ||
Lemma 18. E [el]<1/4+3/2" "
Proof.- We have that

E.[el]1=E.[(E.[]A(x) = c(x)|])*]
=E [Ey, [ IA(x)—c(x)| - |Aly) — c(y)|]]
=E  [54]
where 5., = E [ |A(x) —c(x)] - |Aly) — c(y)|]. Clearly, s,, <1
for all x, y.

Suppose that x and y are not known, and suppose further
that %, # j, for some j. Without loss of generality, assume
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that %, = | and §; = 0. Since y is not known, 7, = 1 for some
k. For a,be {0, 1}, we have that

Pr [cx)=a A clyy=b]=1/4.

To see that this is so, fix all the bits of ¢ except for ¢; and ¢,.
Choosing ¢, now determines the value of ¢(y) (since 7, =0)
to be 1 with probability 1/2. Finally, ¢(x) is determined by
choosing ¢,, and its value will be 1 with probability 1/2,
independent of ¢(y). Thus, it follows that Sy, = 1/4 in this
case.

The probability that either x or y is known is at most
2.2 7" The probability that ¥, =7, forall jis2 " .

Combining these facts gives the stated bound on
E.[e.’] |

Thus, Var[e ]=E[e¢2]—(E[e.])?<4/2" ". Applying
Chebyshev’s inequality, it follows that

4 1
2(!1 —r)2 < E

1
Pre. <z
rl[e( 3

That is, on more than half of the remaining concepts, 4 has

error at least

1 4 l 4
o >

2 21n—r),“2/2 A0t — 132
1 4
= 5 T 5t ~1)2
1 1
=§_nm(l)' |

Helmbold and Warmuth [12] have shown that, in
general, 2vep(C,, ) — Q(\/VCD( C,) log(vep(C,,))) examples
suffice to weakly learn any class C,,. Thus, Theorems 12 and
16 both show that their result is “almost” tight (to within a
constant factor of 2). [t is an open question whether this gap
can be closed.

10. LIMITATIONS ON THE POWER OF
MEMBERSHIP QUERIES

An interesting question in Valiant’s learning model is
under what conditions the sample size required for learning
can be significantly reduced by allowing the learning algo-
rithm to make membership queries, in addition to receiving
random examples from the target distribution. Briefly, a
membership query allows the learner to choose an input x
and receive in unit time the label assigned to x by the
unknown target concept. In Valiant’s model with mem-
bership queries, the learner is still required to output a
hypothesis that is accurate (in either the strong or weak
learning sense) against the target distribution, but is now
allowed both random examples and membership queries
during the learning process.
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It can be shown that Lemma 15 holds even when both
random examples and membership queries are allowed.
More precisely, if C,, is t(n)-unapproximable, then any algo-
rithm weakly learning C, must see more than f(n) labeled
examples of the target, regardless of whether these examples
are chosen randomly from the target distribution or are
membership queries. This again holds even when the target
distribution is known to be uniform. In fact, we can prove
that the t(n) lower bound still holds even when the learning
algorithm is allowed to choose the answers to the mem-
bership queries; that is, the learning algorithm is allowed to
choose an input x and its corresponding label, and is
then guaranteed that the target concept will be consistent
with this labeled example (provided such a concept exists).
Applying these results to the class of parity functions, we
have a natural and simple class of efficiently learnable
Boolean circuits for which the @(n) random sample size
required for strong learning cannot be reduced even by
relaxing to weak learning, restricting the target distribution
to be uniform, providing membership queries, and allowing
the learner to play a significant role in the choice of the
target concept.

Similar issues have been investigated in Euclidean
domains by Eisenberg and Rivest [4].

11. TOWARD A CHARACTERIZATION OF
WEAK SAMPLE COMPLEXITY

As we have mentioned, it is well-known that the sample
size required for strong learning is characterized by the
Vapnik-Chervonenkis dimension. In Section 6, we saw that
this same measure fails to characterize weak sample com-
plexity—for instance, the weak learning sample complexity
of symmetric Boolean functions is significantly smaller than
the strong learning sample complexity. Perhaps the most
interesting open problem suggested by the research
presented here is that of finding a clean combinatorial
characterization of weak sample complexity. We provided
an initial step in this direction in Section 8 by defining the
notion of #(n)-unapproximability and proving that this is
sufficient to imply a 1(n) lower bound. However, the necessity
of this property (or even a weakened variant of it) has not
been demonstrated. A promising alternative that was
suggested to us is the property that every set of d(») points in
the domain is shattered by C,, with the hard distribution
being uniform. However, it is possible to show the existence
of classes C, such that ven(C,, ) = O(n?) and every set of size
n is shattered, yet there is an algorithm that successfully
weakly learns C,, against the uniform distribution using zero
examples! Thus, the combinatorial characterization of weak
sample complexity remains both open and elusive.
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