
Machine Learning 27(1):51-68, 1997.

Predicting nearly as well as

the best pruning of a decision tree

DAVID P. HELMBOLD dph@cse.ucsc.edu

Computer and Information Sciences, University of California, Santa Cruz, CA 95064

ROBERT E. SCHAPIRE schapire@research.att.com

AT&T Labs, 600 Mountain Avenue, Murray Hill, NJ 07974

Abstract. Many algorithms for inferring a decision tree from data involve a two-phase process:

First, a very large decision tree is grown which typically ends up \over-�tting" the data. To reduce

over-�tting, in the second phase, the tree is pruned using one of a number of available methods.

The �nal tree is then output and used for classi�cation on test data.

In this paper, we suggest an alternative approach to the pruning phase. Using a given unpruned

decision tree, we present a new method of making predictions on test data, and we prove that our

algorithm's performance will not be \much worse" (in a precise technical sense) than the predic-

tions made by the best reasonably small pruning of the given decision tree. Thus, our procedure

is guaranteed to be competitive (in terms of the quality of its predictions) with any pruning al-

gorithm. We prove that our procedure is very e�cient and highly robust.

Our method can be viewed as a synthesis of two previously studied techniques. First, we apply

Cesa-Bianchi et al.'s [4] results on predicting using \expert advice" (where we view each pruning

as an \expert") to obtain an algorithm that has provably low prediction loss, but that is com-

putationally infeasible. Next, we generalize and apply a method developed by Buntine [3], [2]

and Willems, Shtarkov and Tjalkens [20], [21] to derive a very e�cient implementation of this

procedure.

1. Introduction

Many algorithms for inferring a decision tree from data, such as C4.5 [13], involve a

two step process: In the �rst step, a very large decision tree is grown to match the

data. If the training data contains noise then this large tree typically \over-�ts"

the data, giving quite poor performance on the test set. Therefore, in the second

phase, the tree is pruned using one of a number of available methods. The �nal

tree is then output and used for classi�cation on test data.

In this paper, we suggest an alternative approach to the pruning phase. Using a

given unpruned decision tree T , we present a new method of making predictions on

test data, and we prove that our algorithm's performance will not be \much worse"

(in a precise technical sense) than the predictions made by the best reasonably small

pruning of the given decision tree. More precisely, we de�ne a value metric based

on the inaccuracy and size of the tree. Our algorithm's performance is comparable

to the performance of the pruning with the highest value. Thus, our procedure is

guaranteed to be competitive (in terms of the quality of its predictions) with any

pruning algorithm.



2 D.P. HELMBOLD AND R.E. SCHAPIRE

Formally, we study this problem in the on-line learning framework introduced

by Littlestone [9] and extended by Littlestone and Warmuth [10] and others. In

this model, at each time step t = 1; : : : ; T , the learner receives an instance x

t

and

must generate a prediction ŷ

t

2 [0; 1]. After an outcome y

t

2 f0; 1g is observed

(which can be thought of as the label or correct classi�cation of the instance x

t

),

the learner su�ers loss jy

t

� ŷ

t

j. Note that ŷ

t

can be interpreted as the bias of a

binary prediction which is 1 with probability ŷ

t

, and 0 with probability 1�ŷ

t

. Then

the loss jy

t

� ŷ

t

j is simply the probability of the learner making a mistake (i.e., a

prediction di�ering from the outcome y

t

). The tools developed for this framework

make it possible to prove very strong bounds on the performance of our algorithm.

The learner computes its predictions using predictions �

t

P

that are generated in

a natural way by each pruning P of the given unpruned tree T . We �rst show

how an algorithm developed and analyzed by Cesa-Bianchi et al. [4] can be applied

immediately to obtain a learning algorithm whose loss is bounded by a function

that, for any pruning P, is linear in the prediction loss of P and the size of P

(roughly, the number of nodes in the pruning). Their algorithm is closely related

to work by Vovk [16] and Littlestone and Warmuth [10]. Note that this is a \worst-

case" analysis in the sense that it does not rely on statistical assumptions of any

kind regarding the source of the data that is being observed. Thus, the resulting

algorithm is very robust.

A naive implementation of this procedure would require computation time linear

in the number of prunings of T ; obviously, this is infeasible. However, we show how

techniques used by Buntine [3], [2] and Willems, Shtarkov and Tjalkens [20], [21] can

be generalized and applied to our setting, yielding a very e�cient implementation

requiring computation time at each trial t that is linear in the length of the path

de�ned by the instance x

t

in the tree T (and therefore is bounded by the depth of

T ).

Various authors have presented techniques for averaging a family of decision

trees [6], [8], [11]. In particular, using a Bayesian formulation, Buntine [3], [2]

gave a method called Bayesian smoothing for averaging the class-probability pre-

dictions of all possible prunings of a given decision tree. Although our method is

very similar to Buntine's, his is designed for use on a batch of examples, while ours

uses e�cient incremental updates of the data structure in an on-line setting.

Willems, Shtarkov and Tjalkens [20], [21] presented their technique in a much

narrower context in which the decision trees considered were assumed to have a

very particular form, and the goal was data compression rather than prediction.

A primary contribution of the current paper is the distillation of key elements of

these previously known methods, and synthesis with other learning-theory results

leading to broader learning applications.

In independent work, Oliver and Hand [12] have experimented with averaging

over di�erent prunings of decision trees. Their results show that in some cases

averaging outperforms the prunings generated by C4.5. Oliver and Hand weight

the prunings by their performance on the training set, while our methods provide

an e�cient way to update the weights as new data is seen. In addition to prunings



PREDICTING NEARLY AS WELL AS THE BEST PRUNING 3

of the full decision tree, Oliver and Hand also included subtrees resulting from those

splits that were considered but rejected when the decision tree was grown. This

can be modeled in our setting by storing multiple prediction rules (one for each

rejected split) at the nodes (see Section 5).

According to Breiman et al. [1], pages 87{92, predicting with the leaves of a

decision tree will often have error at most twice that of the best pruning. They

argue why this is likely when the structure of the decision tree is created from a

training set independent of the test set (but drawn from the same distribution).

In contrast, our main result is a very robust worst-case guarantee: the loss of our

algorithm will be within a small constant factor of the loss of the best pruning of

the decision tree on the test set, even if the training set (from which the decision

tree is grown) and the test set are produced by di�erent distributions, or the test

set is chosen by an adversary.

In summary, the main result of this paper is a highly e�cient and robust algorithm

which provably predicts nearly as well as the best pruning of a given decision tree.

We also describe how our method can be applied to the problem of predicting a

sequence of symbols using variable memory length prediction models, and mention

extensions to other loss functions.

2. Preliminaries

Let � be a �nite alphabet of j�j symbols. A template tree T over � is a rooted,

j�j-ary tree where every internal node of T has one child for each symbol in �.

Thus we can (and will) identify each node in T with the path (sequence of symbols

in �) that leads from the root to that node.

We assume that there is a function which maps every instance x of the domain

X to a path through the template tree T starting at the root and ending at a leaf.

Typically, this path will be de�ned by a sequence of tests at the nodes of T , each

test resulting in the selection of one symbol in � which speci�es the next child to

visit. Although the template tree may be in�nite, we require that each of the paths

associated with an element of X be �nite.

Figure 1 shows an example template tree over the alphabet � = fT, Fg. The

instance space X consists of all possible assignments to six boolean attributes,

b

1

through b

6

. Each internal node of T tests a single bit of the instance x =

(b

1

; b

2

; b

3

; b

4

; b

5

; b

6

) and branches left (T) if the bit is a one and branches right (F)

if the bit is a zero.

For simplicity, we assume that all instances x 2 X are represented in a canonical

form relative to the template tree. More speci�cally, we assume that each instance

x is represented by the string in �

�

de�ned by the path in T associated with the

instance. Such a representation allows us to ignore the underlying tests at the

nodes of T . We identify instances with their canonical representations. Thus each

instance x can be viewed as either an instance or a string in �

�

.



4 D.P. HELMBOLD AND R.E. SCHAPIRE

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�

�

@

@

�

�

A

A

�

�

�

�

A

A

�

�

Q

Q

Q

Q

Q

Q

B

B

B

B

b

1

b

2

b

3

b

5

b

6

b

4

b

2

T F

T F

T F

T F

T F

T

T F

F

Figure 1. An example template tree.

For instance, in Figure 1, the canonical representation of the instance (0, 1, 0, 1,

0, 0) is \FF", and the canonical representation of the instance (0, 1, 1, 0, 0, 1) is

\FTFFTT". Note that in both cases b

1

is 0, so b

3

is the second bit tested.

We use jxj to denote the number of symbols in the canonical representation of x;

thus, jxj is the length of the path induced by x in T . Also, since both instances and

nodes are identi�ed by strings in �

�

, it is clear that a node u is a pre�x of instance

x (written u < x) if and only if node u is on the path in T associated with x.

A pruning P of the tree T is a tree induced by replacing zero or more of the

internal nodes (and associated subtrees) of T by leaves. Thus prunings also have

the property that every node has either zero or j�j children. When an instance x is

evaluated in P, it follows the same path it would have followed in T , stopping when

a leaf of P is reached. The leaf that is so reached is denoted by leaf

P

(x). The set of

all leaves of P is written leaves(P), and the set of all nodes (including both leaves

and internal nodes) is written nodes(P). (Recall that both the leaves and internal

nodes of P are represented by strings in �

�

.) The size of pruning P, written jPj,

is the number of internal nodes and leaves in P minus the number of leaves in P

that are also leaves of T . Not counting the leaves of T in the size of P allows us to



PREDICTING NEARLY AS WELL AS THE BEST PRUNING 5

��

��

��

��

��

��

��

��

��

��

�

�

@

@

�

�

A

A

�

�

@

@

A

A

�

�

A

A

�

�

b

1

b

2

b

3

0.9 0.2

b

1

b

3

P P

0

T F T F

F T F T F

0.80.8

T

0.2

0.6

0.2

Figure 2. Two sample prunings of the template tree in Figure 1.

use the identity

P

P

2

�jPj

= 1 to simplify our later calculations. Figure 2 shows

two possible prunings of the template tree shown in Figure 1, both having size 4.

In order to use these prunings for classi�cation and prediction, we associate with

each leaf of a pruning P a prediction rule to be used on those instances reaching

that leaf in P. We assume that the predictions made by a leaf in P are \inherited"

from the associated node in T . That is, we think of there being a dynamic \mini-

expert" at each node of T ; the prediction of a pruning P is then the same as the

prediction of the \mini-expert" at the leaf of P reached by the instance. Thus,

if some node u is a pre�x of a particular instance and u is a leaf in two di�erent

prunings, then both prunings will generate the same prediction for the instance.

For example, in Figure 2, we have indicated the predictions associated with the

leaves of the two prunings. These predictions are real numbers in [0; 1], whose

interpretation is discussed further below. Note that, since both prunings contain

the leaves FT and FF, both prunings give the same prediction whenever an instance

reaches one of these leaves.

Although most decision-tree algorithms come up with a �xed prediction for each

leaf, we allow more general mini-experts. The predictions of the mini-experts can

be arbitrary functions of the current instance and/or previously seen instances.

Our main results (Theorems 1 and 2) assume that each mini-expert's prediction

can be computed in constant time and that all e�ects of a new instance on all of

the various mini-experts can be recorded in O(jxj) time.

The goal of our learning algorithm is to compete against the performance of

the best, reasonably small such pruning by combining the predictions of all of the

prunings. We study learning in the on-line prediction model used by Littlestone

and Warmuth [10] and others. In this model, learning takes place in a sequence

of trials t = 1; : : : ; T . At each time step t, an instance x

t

is observed, and each

pruning P generates a prediction �

t

P

2 [0; 1]. The master algorithm combines these



6 D.P. HELMBOLD AND R.E. SCHAPIRE

predictions to produce its own prediction ŷ

t

2 [0; 1]. Finally, feedback y

t

2 f0; 1g

is observed. For example, if the path for instance x

t

starts with TT then the

prunings in Figure 2 make the predictions 0:9 and 0:6. In the next section we

describe how the master algorithm produces its prediction ŷ

t

from these values and

the predictions of the other prunings.

As discussed above, the prediction �

t

P

of the pruning P is given, intuitively, by a

mini-expert at the leaf reached by P. That is, we assume formally that each

1

node

u of T generates a prediction pred

t

(u) 2 [0; 1] for instance x

t

, and furthermore,

that

�

t

P

= pred

t

(leaf

P

(x

t

)) (1)

for all P.

The loss of the master algorithm at time t is jŷ

t

� y

t

j. We can interpret the

prediction ŷ

t

2 [0; 1] as the bias of a probabilistic prediction in f0; 1g which is 1

with probability ŷ

t

, and 0 with probability 1� ŷ

t

. Then the loss su�ered jŷ

t

�y

t

j is

exactly the expected probability of the probabilistically predicted bit di�ering from

the true outcome y

t

.

The cumulative loss of the master algorithm is the sum of the losses incurred at

all the trials:

L

A

=

T

X

t=1

jŷ

t

� y

t

j

and, analogously, the cumulative loss of each pruning P is

L

P

=

T

X

t=1

j�

t

P

� y

t

j:

3. An ine�cient master algorithm

In this section, we describe a master algorithm whose loss cannot be \much worse"

than that of any \reasonably small" pruning. For the moment, we assume that

computation time is not a consideration.

In this case, we can use the algorithm described by Cesa-Bianchi et al. [4], which

is an extension of Littlestone and Warmuth's randomized weighted majority al-

gorithm [10], and is related to Vovk's aggregating strategies [16]. This algorithm

was called P (�) in Cesa-Bianchi et al.'s notation, but we refer to it simply as the

\master algorithm." The algorithm maintains a weight w

t

P

> 0 for each pruning

P. Thus the master algorithm of this section keeps a single explicit weight for each

pruned tree. Initially,

X

P

w

1

P

= 1; (2)



PREDICTING NEARLY AS WELL AS THE BEST PRUNING 7

where the sum is over all possible prunings of T .

The initial weights w

1

P

can be viewed as a \prior" over the set of experts. Since

our bounds are strongest for those strategies receiving the greatest initial weight,

we want to choose initial weights that favor those strategies which we expect are

most likely to perform the best. A reasonable choice is

w

1

P

= 2

�jPj

(3)

where jPj is the size measure de�ned in the previous section. This prior favors those

prunings which are small and thus unlikely to reect noise in the training set. (In

small prunings, each leaf's prediction will tend to be based on more examples; see

the discussion of bias versus variance in Breiman et al. [1], pages 87{92.) Although

the master algorithm can run with any prior on the prunings, this 2

�jPj

prior

enables us to e�ciently implement the master algorithm as described in Section 4.

At each time step, the learner computes its prediction as

ŷ

t

= F

�

(r

t

)

where � 2 [0; 1] is a parameter of the algorithm, and r

t

is a weighted average

2

of

the predictions of the experts:

r

t

=

P

P

w

t

P

�

t

P

P

P

w

t

P

: (4)

The function F

�

need only be bounded

1 +

ln((1� r)� + r)

2 ln(

2

1+�

)

� F

�

(r) �

� ln(1� r + r�)

2 ln(

2

1+�

)

;

for all 0 � r � 1. Cesa-Bianchi et al. [4] give several suitable F

�

functions.

After feedback y

t

is received, the weights are updated by the rule

w

t+1

P

= w

t

P

� U

�

(j�

t

P

� y

t

j) (5)

where U

�

can be any function satisfying

�

r

� U

�

(r) � 1� (1� �)r

for r 2 [0; 1].

Cesa-Bianchi et al. show that the master algorithm su�ers loss at most

inf

P

L

P

ln(1=�) + ln(1=w

1

P

)

2 ln(2=(1 + �))

:

Using the choice for w

1

P

given in equation (3), this bound shows that the loss of

the master algorithm is linear in L

P

and jPj, for every pruning P.

This bound is derived from the following two observations. First, any time the

master algorithm incurs some loss `, the sum of the updated weights is at most



8 D.P. HELMBOLD AND R.E. SCHAPIRE

(

1+�

2

)

2`

times the sum of the weights used to predict. Thus if the master algorithm's

total loss is L

A

then the sum of the weights is reduced to (

1+�

2

)

2L

A

or less. Second,

if L

P

is the loss of some pruning P then the weight of P, and thus the sum of the

weights, is always at least w

t

P

(�)

L

P

. Solving these constraints on the sum of the

weights for L

A

yields the above bound. Cesa-Bianchi et al. also discuss in detail

how to choose the parameter �.

Since the preceding bound depends both on the pruning's loss and its size, the

in�mum might not be achieved by the pruning with the smallest loss, especially

if this best pruning contains many nodes. However, the losses of the prunings are

likely to grow with the number of predictions made, while the sizes of the prunings

remain constant. In this case, the master algorithm's predictions will converge to

those of the best pruning.

When only a few predictions are made, the loss of our algorithm is always less

than (a constant times) the loss plus the size of each pruning. Thus, if there is

some pruning P that is reasonably \small" and whose loss L

P

is also reasonable

then the loss of the master algorithm will also be small.

4. An e�cient implementation

Unfortunately, the running time of this procedure is linear in the number of experts

(i.e., prunings), which in this case is enormous (possibly even in�nite). Obviously,

we cannot e�ciently maintain all of the weights w

t

P

explicitly since there are far

too many prunings to consider. Instead, we use a more subtle data structure,

similar to the ones used by Buntine [3], [2] and Willems, Shtarkov and Tjalkens [20],

[21], that can be used to compute the prediction ŷ

t

of the master algorithm. The

size of this data structure is proportional to the number of nodes in T (or, more

accurately, to the number of nodes that have actually been visited). Further, the

time needed to compute the prediction ŷ

t

from the �

t

P

's and to update the data

structure is proportional, at each time step t, to jx

t

j (recall that jx

t

j, in our canonical

representation, is the length of the path de�ned by x

t

in T ).

The basic idea is to maintain weights at the nodes that implicitly encode the

weights of the various prunings. In particular, the weight of pruning P is repre-

sented as 2

�jPj

times the product of the weights stored at the leaves of P. Initially,

weight

1

(u) = 1 for each node u, and these values are only changed if u is a pre�x

of some instance x

t

. Thus even these node weights need only be stored explicitly

for those nodes of T that have actually been visited. This allows us to apply this

procedure e�ciently even if T is extremely large, or even in�nite (so long as every

instance x de�nes a �nite path through the tree).

The �rst main idea of this method is to show how to e�ciently compute sums of

the form

X

P

2

�jPj

Y

s2leaves(P)

g(s) (6)



PREDICTING NEARLY AS WELL AS THE BEST PRUNING 9

��

��

��

��

��

��

��

��

��

��

��

��

�

�

@

@

�

�

A

A

�

�

�

�

Q

Q

Q

B

B

B

B

A

A

�

�

u

s

T

u

0 1

1

0 1

0 1

0

0 1

0 1

Figure 3. Subtrees and names of nodes.

where the �rst sum is over all prunings of T and g is any easily computed function

of the nodes. The second part of the method is to show that r

t

(equation (4)) is

the ratio of two sums, both of which can be written in this form.

Fix a template tree T . For each node u in T , let T

u

be the subtree of T rooted

at u. Note that each node in T

u

is now associated with two strings: s for the path

to the node in T , and s

0

for the path to the node in T

u

(beginning at the root u of

the subtree). Clearly, these are related by the identity s = us

0

, the concatenation

of u and s

0

.

For example, consider the tree in Figure 3. Node u is associated with the path

10. We use u to represent both the node in the tree and the string \10". Node s is

associated with both the path 101 in the entire tree and the path s

0

= 1 in T

u

, the

subtree rooted at u. Since 101 is the concatenation of 10 and 1, we have s = us

0

.

This notational convenience allows us to easily express certain sums and products.

Let g : nodes(T )! R be any function. We de�ne the function g : nodes(T )! R

as follows:

g(u) =

X

P of T

u

2

�jPj

Y

s2leaves(P)

g(us)

where we use the notation

P

P of T

u

to indicate summation over all prunings of T

u

.

Note that the sum given in equation (6) is exactly equal to g(�), where � denotes



10 D.P. HELMBOLD AND R.E. SCHAPIRE

the empty string. Thus, the following lemma, which gives an e�cient method of

computing g, implies a method of computing sums of the form in equation (6).

This lemma generalizes the proofs given for various special cases by Buntine [3],

Lemma 6.5.1 and Willems, Shtarkov and Tjalkens [21], Appendices III and IV.

Lemma 1 Let g, g be as above. Then, for any node u of T :

1. if u is a leaf then g(u) = g(u);

2. if u is an internal node, then g(u) =

1

2

g(u) +

1

2

Q

a2�

g(ua).

Proof: Case 1 follows immediately from the de�nition of g, keeping in mind that

jPj = 0 if P consists only of a leaf of T .

For case 2, we can expand the sum recursively over the children of u. For sim-

plicity, suppose that � = f0; 1g; the similar proof for general � is sketched below.

Note that any pruning P of the subtree T

u

either contains only node u or can be

decomposed into two subtrees, P

0

and P

1

, rooted at the children u0 and u1 of u.

By de�nition of jPj, it can be shown that jPj = 1 + jP

0

j + jP

1

j. Thus, separating

out the case that P consists only of the node u, we can compute g(u) as

1

2

g(u) +

X

P

0

X

P

1

2

�(1+jP

0

j+jP

1

j)

Y

s

0

g(u0s

0

)

Y

s

1

g(u1s

1

) (7)

=

1

2

g(u) +

1

2

 

X

P

0

2

�jP

0

j

Y

s

0

g(u0s

0

)

!

�

 

X

P

1

2

�jP

1

j

Y

s

1

g(u1s

1

)

!

(8)

=

1

2

g(u) +

1

2

Y

a2�

g(ua): (9)

Here it is understood that, for a 2 f0; 1g,

P

P

a

denotes summation over all prunings

P

a

of T

ua

, and

Q

s

a

denotes product over all leaves s

a

of P

a

.

In the more general case that j�j > 2, we repeat the sums and products in

equation (7) analogously for each a 2 �, and we use the more general identity

jPj = 1 +

P

a2�

jP

a

j. Likewise, the factors in equation (8) are repeated for each

a 2 �, yielding equation (9) and completing the lemma.

Thus, computing from the bottom up, the function g can be computed in time

proportional to the number of nodes in T . We will see later that, for the functions

g of interest to us, a data structure can be used for even faster computation of g.

We now show how Lemma 1 can be used to compute the ratio r

t

of equation (4)

e�ciently. This will allow us to e�ciently simulate the master algorithm of Cesa-

Bianchi et al. [4].

For any node u, we de�ne the \weight" of u at time step t, written weight

t

(u),

as u's contribution on the �rst t � 1 time steps to the weight decrease of any tree

P which contains u as a leaf. That is, we de�ne,

weight

t

(u) =

Y

1�t

0

<t

u<x

t

0

U

�

(jpred

t

0

(u)� y

t

0

j)



PREDICTING NEARLY AS WELL AS THE BEST PRUNING 11

(recall that u < x

t

0

means that u is a pre�x of x

t

0

, and thus u is on the path

described by x

t

0

). Clearly, by equation (1), if u is a leaf of P , then

weight

t

(u) =

Y

1�t

0

<t

leaf

P

(x

t

0

)=u

U

�

(j�

t

0

P

� y

t

0

j):

In other words, if u is a leaf in pruning P, then weight

t

(u) is the product of the

weight update factors applied to the weight associated with P at those time steps

when P predicts with the mini-expert at node u.

Recall that U

�

(j�

t

0

P

� y

t

0

j) is the master algorithm's weight update function. For

any pruning P, we have by equations (3) and (5) that

w

t

P

= 2

�jPj

Y

1�t

0

<t

U

�

(j�

t

0

P

� y

t

0

j)

= 2

�jPj

Y

u2leaves(P)

Y

1�t

0

<t

leaf

P

(x

t

0

)=u

U

�

(j�

t

0

P

� y

t

0

j)

= 2

�jPj

Y

u2leaves(P)

weight

t

(u):

Thus, the denominator of r

t

is

X

P

w

t

P

=

X

P

2

�jPj

Y

u2leaves(P)

weight

t

(u);

which has the form given in equation (6) and can be computed as weight

t

(�)

using Lemma 1. The quantity weight

t

(u) has an interpretation as the \weight of

the subtree rooted at u." In other words weight

t

(u) is the combined weight of all

prunings of the subtree rooted at u.

Initially, each node u has weight 1 so that weight

1

(u) = 1. It follows from

Lemma 1 by a trivial induction argument that weight

1

(u), the combined weight

of the entire tree, is equal to 1. Thus, equation (2) is satis�ed.

For the numerator of r

t

, we de�ne

wpred

t

(u) =

�

weight

t

(u)pred

t

(u) if u < x

t

weight

t

(u) otherwise.

Then we have, for any pruning P , that

w

t

P

�

t

P

= 2

�jPj

0

@

Y

u2leaves(P)

weight

t

(u)

1

A

�

t

P

= 2

�jPj

Y

u2leaves(P)

wpred

t

(u) (10)



12 D.P. HELMBOLD AND R.E. SCHAPIRE

by equation (1). Thus,

X

P

w

t

P

�

t

P

=

X

P

2

�jPj

Y

u2leaves(P)

wpred

t

(u) = wpred

t

(�)

also has the form given in equation (6). As above, wpred

t

(u) has an interpretation

relating to the subtree rooted at u. The value wpred

t

(u) is the sum over all

prunings of the subtree rooted at u of the weight of the pruning times the prediction

of the pruning. Thus, wpred

t

(u) can be viewed as the \weighted prediction" of

the prunings of the subtree rooted at u. The values wpred

t

(u) are (generally)

not normalized; as the total weights of the prunings decreases due to errors, so

will wpred

t

(u). Note, however, that the quotient wpred

t

(u)=weight

t

(u) is the

weighted average of the predictions made by the prunings of the subtree rooted at

u.

We have shown then that the numerator and denominator of r

t

(as expressed in

equation (4)) can both be computed in time linear in the size of T . In fact, this

computation can be carried out at each time step t using time proportional to jx

t

j

when the quantities weight

t

(u) and weight

t

(u) are maintained at each node u.

The pseudo-code for the procedure is given in Figure 4.

Initially weight

1

(u) and weight

1

(u) are both equal to 1 for all nodes in T .

In general, after seeing x

t

we must produce r

t

= wpred

t

(�)=weight

t

(�) used by

the master algorithm at time t. The denominator, weight

t

(�), is immediately

accessible since the weight

t

(u) values are maintained at all of the nodes. To

compute wpred

t

(�), we can apply Lemma 1 which suggests a recursive procedure

taking time linear in the number of nodes of T . Note, however, that if node u is

not a pre�x of x

t

then wpred

t

(u) = weight

t

(u). Furthermore, this equality also

holds for all of the descendants of any u which is not a pre�x of x

t

so wpred

t

(u) =

weight

t

(u) for all u which are not pre�xes of x

t

. Thus wpred

t

(u) need only be

computed along the path of x

t

in T , allowing wpred

t

(�) to be computed in time

linear in jx

t

j.

Once y

t

is observed, we need to update the values ofweight

t

(u) andweight

t

(u).

Again, the weight

t

(u) and weight

t

(u) values change only for those u which are

pre�xes of x

t

. Each new weight

t

(u) value requires a single multiplication, and the

new weight

t

(u) values can be computed \bottom-up" in time proportional to jx

t

j.

To summarize, we have thus proved the following theorem, which is the main

result of this paper.

Theorem 1 Let T be a template tree, let (x

1

; y

1

); : : : ; (x

T

; y

T

) be any sequence of

instance-feedback pairs, and let the predictions �

t

P

associated with each pruning P

of T be of the form given in equation (1). Then the loss of the master algorithm

given in Figure 4 is at most

L

P

ln(1=�) + jPj ln(2)

2 ln(2=(1 + �))



PREDICTING NEARLY AS WELL AS THE BEST PRUNING 13

Input: template tree T

access to predictions pred

t

(u) of mini-experts

parameter � 2 [0; 1]

Initialize weight

1

(u) = weight

1

(u) = 1 for all nodes u in T

Do for t = 1; 2; : : :

� Prediction:

{ Given x

t

2 �

�

{ Compute weighted predictions wpred

t

(u) for each subtree using the rule:

wpred

t

(u) =

8

>

>

<

>

>

:

weight

t

(u) if u 6< x

t

(o� path)

weight

t

(u)pred

t

(u) if u = x

t

(path leaf)

1

2

weight

t

(u)pred

t

(u) +

1

2

Q

a2�

wpred

t

(ua)

otherwise (path internal node)

{ Predict ŷ

t

= F

�

(wpred

t

(�)=weight

t

(�))

� Update:

{ Update the weight of each node, weight

t

:

weight

t+1

(u) =

�

weight

t

(u)U

�

(jpred

t

(u) � y

t

j) if u < x

t

(on path)

weight

t

(u) otherwise (o� path)

{ Update the subtree weights weight

t

:

weight

t+1

(u) =

8

>

>

<

>

>

:

weight

t

(u) if u 6< x

t

(o� path)

weight

t+1

(u) if u = x

t

(path leaf)

1

2

weight

t+1

(u) +

1

2

Q

a2�

weight

t+1

(ua)

otherwise (path internal node)

Figure 4. Pseudo-code for the master algorithm.

for every pruning P. Furthermore, the running time of this algorithm, at every

time step t, is linear in jx

t

j.

Recall that weight

1

(u) = weight

1

(u) = 1 for any node u, and that these values

are only changed if u is a pre�x of some instance x

t

. Thus these quantities need

only be stored explicitly for the nodes of T that have actually been visited. This

allows us to apply this procedure e�ciently even if T is extremely large, or even

in�nite (so long as every instance x de�nes a �nite path through the tree).



14 D.P. HELMBOLD AND R.E. SCHAPIRE

Finally, we remark that this O(jx

t

j) running time does not include the time re-

quired to update the mini-experts' predictions. However, if the template tree is

produced by a batch process so that each node's predictions are �xed in advance

then no updating is necessary. Furthermore, the predictions at a node will often

be an easily calculated function of the instances on which that node has previ-

ously predicted. Functions such as Laplace's estimator (

hits+1

trials+2

) are based on the

examples previously seen by that node and can be updated in constant time.

5. Multiple prediction rules at each node

In this section, we extend the preceding results to a more general setting in which

there is more than one \mini-expert" or prediction rule associated with each node

of the template tree. Here, our goal is to select not only the best pruning but also

the best mini-expert at each leaf of this pruning.

For example, suppose we are given a template tree for routing instances but no

prediction rule at the nodes. In this case, we might associate with each node two

mini-experts corresponding to the deterministic boolean rules which always predict

0 or always predict 1. The goal then is to make predictions that are almost as

good as the best labeled pruning, i.e., the best pruning whose leaves have each

been labeled with the best deterministic boolean prediction rule. As before, the

mini-experts need not make the same prediction every time; their predictions can

depend on the current instance and past history.

More formally, let n be the number of mini-experts associated with each node of

the template tree.

3

Our goal now is to compete against the predictions made by

each labeled pruning (P; I), where P is a pruning and I : leaves(P) ! f1; : : : ; ng

assigns a mini-expert to each leaf of P. That is, P tells which pruning to use, and I

tells us which of the mini-experts to predict with for each leaf of P. The prediction

at time t of such a labeled pruning is denoted �

t

P;I

.

At each time step t, each node u generates a prediction pred

t

(u; i) 2 [0; 1] for i =

1; : : : ; n where i is the index of a mini-expert at node u. Analogous to Equation (1),

we assume formally that

�

t

P;I

= pred

t

(leaf

P

(x

t

); I(leaf

P

(x

t

))): (11)

The cumulative loss of a labeled pruning is de�ned to be

L

P;I

=

T

X

t=1

j�

t

P;I

� y

t

j:

Our goal is to come up with a master algorithm with cumulative loss close to that

of the best labeled pruning.

To do so, in the obvious manner, we can replace the weights w

t

P

used in Section 3

by weights w

t

P;I

for every labeled pruning (P; I). We choose the initial weights to

be



PREDICTING NEARLY AS WELL AS THE BEST PRUNING 15

w

1

P;I

= 2

�jPj

� n

�jleaves(P)j

:

As before, applying the results of Cesa-Bianchi et al. [4] immediately gives us a

bound on the loss of the resulting master algorithm. To implement this algorithm

e�ciently, we need to be able to compute

r

t

=

P

P;I

w

t

P;I

�

t

P;I

P

P;I

w

t

P;I

:

As before, we show how numerator and denominator can be written in the form

given in Equation (6).

First, for any function h : nodes(T ) � f1; : : : ; ng ! R, it can be veri�ed that

X

P;I

2

�jPj

Y

u2leaves(P)

h(u; I(u)) =

X

P

2

�jPj

Y

u2leaves(P)

n

X

i=1

h(u; i):

This can be seen by \multiplying out" the product appearing on the right hand

side. Therefore, any expression of the form

X

P;I

2

�jPj

Y

u2leaves(P)

h(u; I(u)) (12)

can be evaluated e�ciently by applying Lemma 1 with g(u) set to

P

n

i=1

h(u; i). To

compute r

t

then, it su�ces to write the denominator and numerator in the form

given in Equation (12).

For the denominator, we de�ne

weight

t

(u; i) =

Y

1�t

0

<t

u<x

t

0

U

�

(jpred

t

0

(u; i)� y

t

0

j):

Then

w

t

P;I

= 2

�jPj

n

�jleaves(P)j

Y

1�t

0

<t

U

�

(j�

t

0

P;I

� y

t

0

j)

= 2

�jPj

Y

u2leaves(P)

1

n

Y

1�t

0

<t

leaf

P

(x

t

0

)=u

U

�

(j�

t

0

P;I

� y

t

0

j)

= 2

�jPj

Y

u2leaves(P)

1

n

weight

t

(u; I(u)):

Thus,

X

P;I

w

t

P;I

=

X

P;I

2

�jPj

Y

u2leaves(P)

1

n

weight

t

(u; I(u))



16 D.P. HELMBOLD AND R.E. SCHAPIRE

has the form given in Equation (12). Similarly, for the numerator, we de�ne

wpred

t

(u; i) =

�

weight

t

(u; i)pred

t

(u; i) if u < x

t

weight

t

(u; i) otherwise.

Then it can be shown, as in Equation (10), that

X

P;I

w

t

P;I

�

t

P;I

=

X

P;I

2

�jPj

Y

u2leaves(P)

1

n

wpred

t

(u; I(u))

which is of the desired form.

Unraveling these ideas, we obtain the algorithm shown in Figure 5. The properties

of this algorithm are summarized by the following theorem:

Theorem 2 Let T be a template tree, let (x

1

; y

1

); : : : ; (x

T

; y

T

) be any sequence

of instance-feedback pairs, and let the predictions �

t

P;I

associated with each labeled

pruning (P; I) be of the form given in Equation (11) where n is the number of mini-

experts associated with each node. Then the loss of the master algorithm given in

Figure 5 is at most

L

P;I

ln(1=�) + jPj ln(2) + jleaves(P)j lnn

2 ln(2=(1 + �))

for every labeled pruning (P; I). Furthermore, the running time of this algorithm,

at every time step t, is linear in jx

t

jn.

6. Other applications and extensions

In a real implementation of our algorithm, the weights stored at each node may

become extremely small, possibly causing a oating-point underow. There is a

simple trick for avoiding this di�culty, based on the following observation: Suppose

all of the weights weight

t

(u) of the nodes u along a given root-to-leaf path are

multiplied by some constant c. Then because each pruning contains exactly one

leaf that is a node from the given path, this e�ectively causes both wpred

t

(�) and

weight

t

(�) to be multiplied by c, and therefore, the ratio of these values (which

is used to produce the algorithm's predictions) is una�ected. Thus, if the weights

along a path in the tree seem too small, we can multiply all of these weights by a

constant to prevent oating-point underow.

4

As a simple application of our result, we can use our method to predict a sequence

of symbols, say, the next letter in a passage of English text. We might restrict

our predictions to depend on the most recently observed sequence of characters.

For instance, on seeing \q," we might reliably predict that the next letter is \u."

Obviously, in other cases, a longer context is needed for reliable prediction. Thus,

we would like to use di�erent lengths for the di�erent contexts. By de�ning a

template tree in which the root node tests the last symbol, its children test the



PREDICTING NEARLY AS WELL AS THE BEST PRUNING 17

Input: template tree T

access to predictions pred

t

(u; i) of mini-experts

parameter � 2 [0; 1]

Initialize weight

1

(u; i) = weight

1

(u) = 1 for all nodes u in T , and i = 1; : : : ; n.

Do for t = 1; 2; : : :

� Prediction:

{ Given x

t

2 �

�

{ Compute weighted predictions wpred

t

(u) for each subtree using the rule:

wpred

t

(u) =

8

>

>

>

>

<

>

>

>

>

:

weight

t

(u) if u 6< x

t

(o� path)

1

n

P

n

i=1

weight

t

(u; i)pred

t

(u; i)

if u = x

t

(path leaf)

1

2n

P

n

i=1

weight

t

(u; i)pred

t

(u; i) +

1

2

Q

a2�

wpred

t

(ua)

otherwise (path internal node)

{ Predict ŷ

t

= F

�

(wpred

t

(�)=weight

t

(�))

� Update:

{ Update weight

t

:

weight

t+1

(u; i) =

�

weight

t

(u; i)U

�

(jpred

t

(u; i) � y

t

j) if u < x

t

(on path)

weight

t

(u; i) otherwise (o� path)

{ Update the subtree weights weight

t

:

weight

t+1

(u) =

8

>

>

<

>

>

:

weight

t

(u) if u 6< x

t

(o� path)

1

n

P

n

i=1

weight

t+1

(u; i) if u = x

t

(path leaf)

1

2n

P

n

i=1

weight

t+1

(u; i) +

1

2

Q

a2�

weight

t+1

(ua)

otherwise (path internal node)

Figure 5. Pseudo-code for the master algorithm with multiple mini-experts.

symbol before last, and so on, we can use our method to make predictions that are

competitive with the best pruning. Such a pruning, in this case, is equivalent to

a rule for determining one of several variable-length contexts, which in turn can

be used to predict the next symbol. Learning results on such su�x trees were

presented by Ron, Singer and Tishby [15].

Similar tree machines have been used to represent �nite memory sources in the

information theory community, and they form the core of Rissanen's Context algo-

rithm for universal data compression [14] (see also [17], [18], [19]). In work more



18 D.P. HELMBOLD AND R.E. SCHAPIRE

closely related to the results presented here, an e�cient algorithm for averaging over

prunings of such trees was presented by Willems, Shtarkov and Tjalkens [20], [21].

However, these authors focus on predicting a distribution of symbols for coding

purposes, rather than simply predicting what the next symbol will be.

Our method is easily extended to other loss functions provided that there exists

a multiplicative weight-update algorithm of the appropriate form. For instance,

such algorithms are given by Vovk [16], Kivinen and Warmuth [7], and Freund and

Schapire [5].

Acknowledgments

Thanks to Jason Catlett, William Cohen, Yoav Freund, Ron Kohavi, Jonathan

Oliver, Alon Orlitsky, Dana Ron, Linda Sellie, Bruce Sherrod, Yoram Singer, Man-

fred Warmuth, and Marcelo Weinberger for many helpful discussions. Thanks also

to Meier Feder for (indirectly) bringing references [20], [21] to our attention, and

to the anonymous reviewers for their careful reading and helpful comments.

Notes

1. Actually, we only use the predictions of node u when u is a pre�x of x

t

.

2. Although the initial weights sum to 1, this is generally not the case due to the update step of

Equation (5). Therefore dividing by the sum of the weights is necessary to obtain the weighted

average of the experts' predictions.

3. The generalization to the case in which the number of mini-experts varies from node to node

is straightforward.

4. Note that this operation a�ects the data structure in other ways; for instance, all of the values

weight

t

(u) for nodes u along the given path must be updated.

References

1. Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classi�cation

and Regression Trees. Wadsworth International Group, 1984.

2. Wray Buntine. Learning classi�cation trees. Statistics and Computing, 2:63{73, 1992.

3. Wray Lindsay Buntine. A Theory of Learning Classi�cation Rules. PhD thesis, University

of Technology, Sydney, 1990.

4. Nicol�o Cesa-Bianchi, Yoav Freund, David P. Helmbold, David Haussler, Robert E. Schapire,

and Manfred K. Warmuth. How to use expert advice. In Proceedings of the Twenty-Fifth

Annual ACM Symposium on the Theory of Computing, pages 382{391, 1993. To appear,

Journal of the Association for Computing Machinery.

5. Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learn-

ing and an application to boosting. In Computational Learning Theory: Second European

Conference, EuroCOLT '95, pages 23{37. Springer-Verlag, 1995.

6. Trevor Hastie and Daryl Pregibon. Shrinking trees. Technical report, AT&T Bell Laborato-

ries, 1990.

7. Jyrki Kivinen and Manfred K. Warmuth. Using experts for predicting continuous outcomes.

In Computational Learning Theory: EuroCOLT '93, pages 109{120. Springer-Verlag, 1994.



PREDICTING NEARLY AS WELL AS THE BEST PRUNING 19

8. Suk Wah Kwok and Chris Carter. Multiple decision trees. In Ross D. Shachter, Tod S.

Levitt, Laveen N. Kanal, and John F. Lemmer, editors, Uncertainty in Arti�cial Intelligence

4, pages 327{335. North-Holland, 1990.

9. Nick Littlestone. Learning when irrelevant attributes abound: A new linear-threshold algo-

rithm. Machine Learning, 2:285{318, 1988.

10. Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information

and Computation, 108:212{261, 1994.

11. Jonathan J. Oliver and David Hand. Averaging over decision stumps. In Machine Learning:

ECML-94, pages 231{241. Springer-Verlag, 1994.

12. Jonathan J. Oliver and David J. Hand. On pruning and averaging decision trees. In Proceed-

ings of the Twelfth International Conference on Machine Learning, pages 430{437, 1995.

13. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

14. Jorma Rissanen. A universal data compression system. IEEE Transactions on Information

Theory, IT-29(5):656{664, September 1983.

15. Dana Ron, Yoram Singer, and Naftali Tishby. Learning probabilistic automata with variable

memory length. In Proceedings of the Seventh Annual ACM Conference on Computational

Learning Theory, pages 35{46, 1994.

16. Volodimir G. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop

on Computational Learning Theory, pages 371{383, 1990.

17. M. J. Weinberger, A. Lempel, and J. Ziv. Universal coding of �nite-memory sources. IEEE

Transactions on Information Theory, 38(3):1002{1014, May 1992.

18. Marcelo J. Weinberger, Neri Merhav, and Meir Feder. Optimal sequential probability assign-

ment for individual sequences. IEEE Transactions on Information Theory, 40(2):384{396,

March 1994.

19. Marcelo J. Weinberger, Jorma J. Rissanen, and Meir Feder. A universal �nite memory source.

IEEE Transactions on Information Theory, 41(3):643{652, 1995.

20. F. M. J. Willems, Y. M. Shtarkov, and Tj. J. Tjalkens. Context tree weighting: a sequential

universal source coding procedure for FSMX sources. In Proceedings 1993 IEEE International

Symposium on Information Theory, page 59, 1993.

21. Frans M. J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. The context tree weighting

method: basic properties. IEEE Transactions on Information Theory, 41(3):653{664, 1995.


