
Machine Learning, 27(1):97-119, 1997.

A Comparison of New and Old Algorithms for A

Mixture Estimation Problem

DAVID P. HELMBOLD dph@cse.ucsc.edu

Computer and Information Sciences, University of California, Santa Cruz, CA 95064

ROBERT E. SCHAPIRE schapire@research.att.com

AT&T Labs, 600 Mountain Avenue, Murray Hill, NJ 07974

YORAM SINGER singer@research.att.com

AT&T Labs, 600 Mountain Avenue, Murray Hill, NJ 07974

MANFRED K. WARMUTH manfred@cse.ucsc.edu

Computer and Information Sciences, University of California, Santa Cruz, CA 95064

Abstract. We investigate the problem of estimating the proportion vector which maximizes the

likelihood of a given sample for a mixture of given densities. We adapt a framework developed for

supervised learning and give simple derivations for many of the standard iterative algorithms like

gradient projection and EM. In this framework, the distance between the new and old proportion

vectors is used as a penalty term. The square distance leads to the gradient projection update,

and the relative entropy to a new update which we call the exponentiated gradient update (EG

�

).

Curiously, when a second order Taylor expansion of the relative entropy is used, we arrive at an

update EM

�

which, for � = 1, gives the usual EM update. Experimentally, both the EM

�

-update

and the EG

�

-update for � > 1 outperform the EM algorithm and its variants. We also prove a

polynomial bound on the rate of convergence of the EG

�

algorithm.

1. Introduction

The problem of maximum-likelihood (ML) estimation of a mixture of densities is

an important and well known learning problem [5]. ML estimators are asymptot-

ically unbiased and are a basic tool for other more complicated problems such as

clustering and learning hidden Markov models. We investigate the ML-estimation

problem when the densities are given and only the mixture proportions are un-

known. That is, we assume that we are given a set of distributions D

1

; : : : ; D

N

over some domain, together with a sample of points from this domain. Our goal

is to �nd the mixture coe�cients v

1

; : : : ; v

N

(v

i

� 0 and

P

v

i

= 1) which maxi-

mize (approximately) the likelihood of the sample under the mixture distribution

P

v

i

D

i

. Most of the common techniques to solve this problem are based on either

gradient ascent iterative schemes [11] or on the Expectation Maximization (EM)

algorithm for parameter estimation from incomplete data [4], [16].

We derive the standard iterative algorithms for the unsupervised mixture propor-

tions estimation problem by placing them in a common hill-climbing framework.

This framework is analogous to the one developed by Kivinen and Warmuth [8]

2 D.P. HELMBOLD, R.E. SCHAPIRE, Y. SINGER, M.K. WARMUTH

for supervised on-line learning. Our goal is to maximize the log likelihood of the

observations as a function of the mixture vector w, denoted by LogLike(w). This

is computationally hard and requires iterative methods. In the tth iteration we

approximate the log-likelihood LogLike(w

t+1

) at the new mixture vector w

t+1

by

LogLike(w

t

)+rLogLike(w

t

)�(w

t+1

�w

t

), which is the Taylor expansion of the log-

likelihood around the old mixture vector w

t

. It is now easy to maximize this approx-

imated log-likelihood. However the approximation degrades the further we move

from the old mixture vector w

t+1

. Thus we subtract a penalty term d(w

t+1

;w

t

)

which is a non-negative function measuring the distance between the new and old

mixture vector. This penalty term keeps w

t+1

close to w

t

as measured by the

distance function d. In summary we are maximizing the function

F (w

t+1

) = � (LogLike(w

t

) +rLogLike(w

t

) � (w

t+1

�w

t

)) � d(w

t+1

;w

t

) : (1)

The relative importance between the penalty term and increasing the log-likelihood

is governed by the positive parameter �, called the learning rate.

Maximizing the function F with di�erent distance functions leads to various iter-

ative update rules. Using the square distance gives the update rule of the gradient

projection algorithm and the relative entropy distance gives a new update called

the exponentiated gradient update (EG

�

). By using a second order Taylor expan-

sion of the relative entropy we get the �

2

distance function. When this distance

function is used and � is set to one, we get the same update as an iteration of the

EM algorithm for the simple mixture estimation problem considered in this paper.

Our experimental evidence suggests that setting � > 1 results in a more e�ective

update. These results agree with the in�nitesimal analysis in the limit of n ! 1

based on a stochastic approximation approach [14], [15], [16].

For the exponentiated gradient algorithm, we are able to prove rigorous polyno-

mial bounds on the number of iterations needed to get an arbitrarily good ML-

estimator. However, this result assumes that there is a positive lower bound on

the probability of each sample point under each of the given distributions. When

no such lower bound exists (i.e., when some point has zero or near-zero probability

under one of the distributions), we are able to prove similar but weaker bounds for

a modi�ed version of EG

�

.

We obtain our convergence results by viewing the mixture estimation problem as

an on-line learning problem. Each iteration becomes a trial where the algorithm is

charged a \loss" of�LogLike(w

t

), so minimizing the loss corresponds to maximizing

the log-likelihood. Note that the ML solution will also have a loss on each trial.

By bounding the extra loss of the algorithm over the loss incurred by the ML

solution u over a sequence of iterations, we can show that at least one of the w

t

vectors produced by the algorithm is reasonably good. Note that these results show

convergence in log-likelihood rather than convergence of the mixture vector to the

ML solution. Furthermore, the standard rate of convergence results usually apply

only when the algorithm is started with a vector near the ML solution, whereas

our results show convergence for any initial probability vector with strictly positive

components.

A COMPARISON OF NEW AND OLD ALGORITHMS 3

The derivations of the learning rules using the above framework are simple and

can readily be applied to other settings. They are similar to previous derivations

found in the literature [16], [13].

2. De�nitions and Problem Statement

Let R represent the real numbers. We say a vector v = (v

1

; :::; v

N

) 2 R

N

is a

probability vector if, 8i : v

i

� 0 and

P

n

i=1

v

i

= 1. The vector (1=N; : : : ; 1=N)

is called the uniform probability vector. We use the following distance functions

between probability vectors u and v:

d

EUC

(ujjv)

def

=

1

2

N

X

i=1

(u

i

� v

i

)

2

=

1

2

ku� vk

2

d

RE

(ujjv)

def

=

N

X

i=1

u

i

ln

u

i

v

i

and

d

�

2
(ujjv)

def

=

1

2

N

X

i=1

(u

i

� v

i

)

2

v

i

:

All three distance functions are non-negative and zero i� u = v. The �rst one is

half of the square of the Euclidean length of the vector u�v. The second one is the

standard relative entropy and the last one is a second order Taylor approximation

(at u = v) of the relative entropy called the �

2

-distance. These distance functions

are used in Section 3 to derive the updates used in this paper (See discussion at

the end of Section 3 and Figure 1).

We consider the following maximum-likelihood mixture estimation problem:

Input: A P�N matrixX of non-negative real numbers with rows x

1

through x

P

.

Goal: Find a probability vector w that maximizes the log-likelihood,

LogLike(w) =

1

P

P

X

p=1

ln

N

X

i=1

x

p;i

w

i

!

=

1

P

P

X

p=1

ln(x

p

�w) ;

where x

p

is the pth row of X.

The maximizers of the log-likelihood are called the maximum likelihood (ML)

solutions. It is easy to see that the Hessian of the log-likelihood is negative semi-

de�nite. Thus there are no spurious local maxima and the ML solutions form a

convex region. We use u to denote an arbitrary ML solution, and call u \the ML

solution" for brevity. As there is no straightforward method for computing an ML

solution, iterative methods which compute a sequence, w

1

; : : : ;w

t

; : : :, converging

to an ML solution are popular.

It is most natural to view each row x

p

of X as representing an observation and

the ith column of X as containing the probability of each observation under some

known distribution D

i

. The entry x

p;i

is then the probability under distribution D

i

4 D.P. HELMBOLD, R.E. SCHAPIRE, Y. SINGER, M.K. WARMUTH

of the pth observation, and, for any probability vector v, x

p

� v is the probability

under mixture v of the pth observation under the mixture distribution

P

N

i=1

v

i

D

i

.

The ML solution u gives the proportions or weightings of the D

i

's that maximize

the log-likelihood of the observations.

We use rL(w

t

) to represent the gradient of the log-likelihood function at prob-

ability vector w

t

,

rL(w

t

)

def

=

�

@LogLike(w

t

)

@w

t;1

; : : : ;

@LogLike(w

t

)

@w

t;N

�

=

1

P

P

X

p=1

x

p;1

x

p

�w

t

; : : : ;

1

P

P

X

p=1

x

p;N

x

p

�w

t

!

:

3. The Updates

Kivinen and Warmuth [8] studied a general framework for on-line learning in which

they derived algorithms for a broad class of loss functions. Here, we apply their

method speci�cally to negative log-likelihood.

Assume that at iteration t we have the current probability vectorw

t

and are trying

to �nd a better vector w

t+1

. Kivinen and Warmuth study the supervised on-line

setting where the vector w

t

summarizes the learning done in previous iterations

1

and that learning can be preserved by choosing a w

t+1

that is \close" to w

t

. Their

method �nds a new vector w

t+1

that (approximately) maximizes the following

function:

^

F (w

t+1

) = �LogLike(w

t+1

) � d(w

t+1

;w

t

); � > 0 : (2)

The penalty term, �d(w

t+1

;w

t

), tends to keep w

t+1

close to w

t

(with respect to

the distance measure d) and the relative importance between the penalty term and

maximizing the log-likelihood on the current iteration is governed by the positive

parameter �, called the learning rate. A large learning rate means that maximizing

the likelihood for the current row is emphasized while a small learning rate leads to

an update which keeps w

t+1

close to w

t

. Since our iterative updates will be based

on the local conditions at the start vector w

t

, the penalty term and the learning

rate measure how rapidly these local conditions are expected to change as we move

away fromw

t

. Unfortunately, �nding aw

t+1

maximizing

^

F is computationallyhard

because rL(w

t+1

), the gradient of the log-likelihood at w

t+1

, is unknown. Kivinen

and Warmuth bypass this di�culty by approximating rL(w

t+1

) by rL(w

t

) and

thus are really maximizing the function F from Equation (1).

To maximize this function F , we add a Lagrange multiplier for the constraint

that the components of w

t+1

sum to one, leading us to maximize

~

F (w

t+1

;) = � (LogLike(w

t

) + rL(w

t

) � (w

t+1

�w

t

))

�d(w

t+1

;w

t

) +

N

X

i=1

w

t+1;i

� 1

!

:

A COMPARISON OF NEW AND OLD ALGORITHMS 5

This is done by setting the N partial derivatives to zero and enforcing the nor-

malization constraint. So our framework consists of solving the following N + 1

equations for the N coe�cients of w

t+1

:

@

~

F (w

t+1

;)

@w

t+1;i

= �rL(w

t

)

i

�

@d(w

t+1

;w

t

)

@w

t+1;i

+ = 0 (3)

and

N

X

i=1

w

t+1;i

= 1 : (4)

We now derive all updates used in this paper by plugging di�erent distance

functions into the above framework. For the standard gradient projection up-

date (which we abbreviate GP

�

) we use the distance function d

EUC

(w

t+1

jjw

t

) =

1

2

kw

t+1

�w

t

k

2

: In this case the equations (3) become

�rL(w

t

)

i

� (w

t+1;i

� w

t;i

) + = 0 :

By summing the aboveN equalities and using the identities

P

N

i=1

w

t;i

=

P

N

i=1

w

t+1;i

=

1 we see that =

�

N

P

N

i=1

rL(w

t

)

i

and obtain the update

w

t+1;i

= w

t;i

+ �

rL(w

t

)

i

�

1

N

N

X

i=1

rL(w

t

)

i

!

: (5)

If we use the relative entropy, d

RE

(w

t+1

jjw

t

) =

P

n

i=1

w

t+1;i

ln(w

t+1;i

=w

t;i

), as a

distance function then the equations (3) become

�rL(w

t

)

i

� (ln

w

t+1;i

w

t;i

+ 1) + = 0 :

By solving for the w

t+1;i

we have

w

t+1;i

= w

t;i

e

�rL(w

t

)

i

+�1

:

Enforcing the normalization constraint (4) gives a new update which we call the

exponentiated gradient

2

(EG

�

) update:

w

t+1;i

=

w

t;i

e

�rL(w

t

)

i

P

N

j=1

w

t;j

e

�rL(w

t

)

j

: (6)

The framework can also be used to motivate the Expectation Maximization al-

gorithm (EM) which is another algorithm commonly used for maximum likeli-

hood estimation problems. For this we use the �

2

(Chi-squared) distance measure

d

�

2
(w

t+1

jjw

t

) =

1

2

P

N

i=1

(w

t+1;i

� w

t;i

)

2

=w

t;i

. Now the equations (3) become

6 D.P. HELMBOLD, R.E. SCHAPIRE, Y. SINGER, M.K. WARMUTH

�rL(w

t

)

i

�

�

w

t+1;i

w

t;i

� 1

�

+ = 0 :

By solving for the w

t+1;i

we get

w

t+1;i

= �w

t;i

rL(w

t

)

i

+w

t;i

(+ 1) :

We can now sum the above N equalities and use the constraints that

P

N

i=1

w

t;i

= 1

and

P

N

i=1

w

t+1;i

= 1. Our particular mixture estimation problem has the invariant

3

P

N

i=1

w

t;i

rL(w

t

)

i

= 1. Thus = �� and we obtain the update

w

t+1;i

= w

t;i

(� (rL(w

t

)

i

� 1) + 1) : (7)

We call Equation (7) the EM

�

-update because when � = 1 this gives the standard

Expectation-Maximization (EM) update, w

t+1;i

= w

t;i

rL(w

t

)

i

, for the problem

considered in this paper. The EM

1

update can be motivated by the likelihood

equations, and the generalization to arbitrary � was studied by Peters and Walker

[14], [15].

Since the �

2

distance approximates the relative entropy it may not be surprising

that the EM

�

-update (7) also approximates the EG

�

-update (6). We �rst rewrite

the exponentiated gradient update by dividing the numerator and denominator by

e

�

and then replace the exponential function e

z

by its �rst order lower bound 1+z:

w

t+1;i

=

w

t;i

e

�(rL(w

t

)

i

�1)

P

N

j=1

w

t;j

e

�(rL(w

t

)

j

�1)

�

w

t;i

(1 + �(rL(w

t

)

i

� 1))

P

N

j=1

w

t;j

(1 + �(rL(w

t

)

j

� 1))

= w

t;i

(�(rL(w

t

)

i

� 1) + 1) :

Thus the EM

�

-update can be viewed as a �rst order approximation of the EG

�

-

update. The approximation is accurate when the exponents �(rL(w

t

)

j

� 1) are

small. The advantage of the EM

�

-update is that it is computationally cheaper as

it avoids the exponentiation. However the EG

�

-update is easier to analyze. Our

experiments indicate that these two update rules tend to approximate each other

well.

Each of the di�erent distance functions leads to a di�erent bias that is encoded

in the update. In Figure 1 we plot the three distance functions d

EUC

(w

t+1

jjw

t

),

d

RE

(w

t+1

jjw

t

) and d

�

2
(w

t+1

jjw

t

) as a function of w

t+1

for the three dimensional

problem (with a triangle as the feasible region for w

t+1

). The contour lines for

the distance function d

EUC

are circles and the contour lines for d

�

2
are ellipses

that become more degenerate as the old weight vector w

t

approaches the boundary

of the feasible region. The contour lines for d

RE

are deformed ellipses that bend

towards the vertices of the triangular feasible region.

One can also get an update by re-parameterizing the probability vectors and doing

unconstrained gradient ascent in the new parameter space. We use the standard

exponential parameterization [2]: w

i

= e

r

i

=

P

N

j=1

e

r

j

and maximize the function

A COMPARISON OF NEW AND OLD ALGORITHMS 7

Figure 1. The �gure contains plots of the three distance functions d

EUC

(w

t+1

jjw

t

) (�rst row),

d

RE

(w

t+1

jjw

t

) (second row) and d

�

2

(w

t+1

jjw

t

) (third row) as a functionofw

t+1

. The dimension

is three and the non-negativity constraint on the three components of w

t+1

plus the fact that the

componentmust sum to one result in a triangle as the feasible region for w

t+1

. The corners of the

triangle correspond to the vector w

t+1

= (0;0;1) at the top vertex and vectors (1,0,0) and (0,1,0)

at the left and right bottom vertices. The plots are contour plots of the distance function while

looking at the triangle from above. The left column gives the distance from the uniform vector

w

t

= (1=3;1=3;1=3) which is at the center of the triangle and the right column the distance from

the point (0.3, 0.2, 0.5). Note that contour lines may represent di�erent distances in di�erent

diagrams.

ParLogLike(r) = LogLike(w(r)):

(Note that the w's are probability vectors whereas the corresponding vectors r

are unconstrained and lie in R

N

.) For this parameterization the gradient descent

8 D.P. HELMBOLD, R.E. SCHAPIRE, Y. SINGER, M.K. WARMUTH

update becomes

r

t+1;i

= r

t;i

+ �

@ParLogLike(r

t

)

@r

t;i

= r

t;i

+ �w

t;i

(rL(w

t

)

i

� 1) :

This update can also be derived in our framework by approximately maximizing a

function corresponding to

^

F (Equation (2)):

^

G(r

t+1

) = �ParLogLike(r

t+1

)� d(r

t+1

; r

t

); � > 0 :

For this maximization, we use d(r

t+1

; r

t

) =

1

2

jjr

t+1

� r

t

jj

2

as a distance function

and approximate the gradient at r

t+1

with the gradient at r

t

.

All of the above update rules can be turned into algorithms by specifying the

learning rate � to use in each iteration. The EM algorithm uses a �xed scheduling,

where the same learning rate (namely, � = 1) is used in each iteration. Another

possibility is to anneal the learning rate. At �rst, a high learning rate is used to

quickly approach the ML solution. Later iterations use a lower learning rate to aid

convergence.

The EM algorithm is in fact a limiting case of a more general approach usually

called Generalized EM (GEM) [4], [12]. Neal and Hinton [13] considered another

extension of EM which involves examining only a portion of the observation matrix

X on each iteration. In general, any subset of the observations could be used, and

the algorithm which considers a di�erent row (observation) on each iteration is the

natural analogue of on-line algorithms in the supervised case.

Note that in the above derivations of the updates we ignored the non-negativity

constraints on the new weights w

t+1;i

. For the EG

�

update and for the gradient

descent update with exponential parameterization the non-negativity constraints

follow from the non-negativity of the previous weights w

t;i

. However for EM

�

and

GP

�

the learning rate � has to be su�ciently small to assure the non-negativity

of the w

t+1;i

. In particular, the standard EM algorithm (using � = 1) has the

property that the non-negativity constraints are always preserved.

4. Convergence and Progress

In this section we discuss the convergence properties of the algorithms. Using

standard methods (with the usual assumptions for convergence proofs) as in Lu-

enberger [11], it can be shown that all updates described in the previous section

converge locally to an optimal ML solution, provided that the current mixture vec-

tor w

t

is close to the ML solution and given the usual assumptions. Moreover,

using techniques similar to those in [15], [16], it can be shown that it is better to

use a learning rate � > 1 rather than the rate � = 1. This implies that the EM

algorithm is not optimal for this family of update rules. This analysis is supported

by the experimental results presented in the next section, where choosing � > 1

A COMPARISON OF NEW AND OLD ALGORITHMS 9

leads to faster convergence, even when the current mixture vector is far from the

ML solution.

These methods su�er from a number of limitations. For instance, the proof of

convergence is only valid in a small neighborhood of the solution. In this section,

we present a di�erent technique for proving the convergence of the EG

�

update and

(under non-negativity assumptions) the GP

�

updates.

If an update is derived with a distance function d then it is natural to analyze how

fast the mixture vector moves towards an (unknown) ML solution u as measured

by this distance function. More precisely, we use the same distance function that

motivates the update as a potential function to obtain worst-case cumulative loss

bounds over sequences of updates (similar to the methods applied to the supervised

case [8]). The natural loss of a mixture vector w

t

for our problem is �LogLike(w

t

).

Note that this loss is unbounded since the likelihood for w

t

is zero when there is

some x

p

for whichw

t

�x

p

= 0. In the supervised case, one can obtain �rm worst-case

loss bounds with respect to the square loss for various updates by analyzing the

progress [8]. But the square loss is bounded and it is not surprising that it is much

harder to obtain strong loss bounds for our (unbounded loss) unsupervised setting.

Nevertheless this type of analysis can give insight on how an iterative algorithm

moves towards the ML solution and on the relationships between di�erent update

rules. We obtained some reasonably good bounds for the GP

�

and EG

�

updates.

We deal with the unboundedness of the loss function by initially assuming that

the smallest entry in the matrix is bounded away from zero. Thus, for all p and

i we assume x

p;i

� r > 0. In the following section we give a proof bounding the

average additional loss during T trials of the algorithm EG

�

over the loss of the

ML solution by

1

r

r

lnN

2T

:

Thus, by picking T = lnN=2�

2

r

2

we can guarantee that at least one of the w

t

's

computed by algorithm EG

�

has loss at most � larger than the ML solution.

In contrast, we prove a similar bound for the GP

�

update

4

in Section 4.2 showing

that the average additional loss during T trials of the algorithmGP

�

above the loss

of the ML solution is at most

1

r

r

2N

T

:

However, the analysis assumes that the GP

�

algorithm does not produce mixture

vectors with negative components. This assumption may not always hold since the

update of the GP

�

algorithm is additive. We have been unable to prove that the �

used to obtain the above bound avoids this di�culty.

Even though the above bounds are weak in that they grow with 1=r, and even

though we don't know of any matching lower bounds, they suggest a crucial dif-

ference between the exponentiated gradient and gradient descent family, namely,

the logarithmic growth (in terms of N) of the additional loss bound of the former

10 D.P. HELMBOLD, R.E. SCHAPIRE, Y. SINGER, M.K. WARMUTH

versus the square-root growth of the latter family. Similar observations were made

in the supervised setting [8], [9].

We also show below how to obtain bounds when the entries in the matrix have

zero-valued components. We essentially average the data matrix with a uniform

matrix (this �-Bayesian averaging was also used in [1]) and then use the averaged

matrix to run our algorithm. One can show that the ML solution for the averaged

matrix is not too far (in loss) away from the ML solution of the original matrix,

but the averaged matrix has the advantage of having entries bounded away from

zero.

4.1. Convergence proofs for exponentiated-gradient algorithms

Recall that the EG

�

algorithm receives a (�xed) set of P instances, x

1

; : : : ;x

P

,

each in R

N

with positive components. At each iteration, the algorithm produces

a mixture or probability vector w

t

2 R

N

and su�ers a loss related to the log-

likelihood of the set under the algorithm's mixture. The algorithm then updates

w

t

.

The loss su�ered by the algorithm at time t is

�

1

P

P

X

p=1

ln(w

t

� x

p

);

while the loss of the (unknown) ML solution u is

�

1

P

P

X

p=1

ln(u � x

p

):

We are interested in bounding the (cumulative) di�erence between the loss of the

algorithm and the loss of the ML solution.

We assume that max

i

x

t;i

= 1 for all p. We make this assumption without loss of

generality since multiplying an instance x

p

by some constant simply adds a constant

to both losses, leaving their di�erence unchanged. Put another way, the assumed

lower bound r on x

p;i

used in Theorem 1 (below) can be viewed as a lower bound

on the ratio of the smallest to largest component of any instance x

p

.

The EG

�

algorithm uses the update rule:

w

t+1;i

=

w

t;i

exp

�

�

P

P

P

p=1

x

p;i

w

t

�x

p

�

Z

t

where � > 0 is the learning rate, and Z

t

is the normalization

Z

t

=

N

X

i=1

w

t;i

exp

�

P

P

X

p=1

x

p;i

w

t

� x

p

!

:

A COMPARISON OF NEW AND OLD ALGORITHMS 11

Theorem 1 Let u 2 R

N

be a probability vector, and let x

1

; : : : ;x

P

be a sequence

of instances with x

p;i

� r > 0 for all i; p, and max

i

x

p;i

= 1 for all p. For � > 0,

EG

�

produces a sequence of probability vectors w

1

; : : : ;w

T

such that

�

T

X

t=1

1

P

P

X

p=1

ln(w

t

� x

p

) � �

T

P

P

X

p=1

ln(u � x

p

) +

d

RE

(ujjw

1

)

�

+

�T

8r

2

: (8)

Furthermore, if w

1

is chosen to be the uniform probability vector, and we set

� = 2r

r

2 lnN

T

then

�

T

X

t=1

1

P

P

X

p=1

ln(w

t

� x

p

) � �

T

P

P

X

p=1

ln(u � x

p

) +

p

2T lnN

2r

: (9)

Proof: We have that

d

RE

(ujjw

t+1

)� d

RE

(ujjw

t

) = �

X

i

u

i

ln(w

t+1;i

=w

t;i

)

= �

X

i

u

i

� lnZ

t

+

�

P

P

X

p=1

x

p;i

w

t

� x

p

!

= �

�

P

P

X

p=1

u � x

p

w

t

� x

p

+ lnZ

t

: (10)

We now work on bounding Z

t

.

Z

t

=

N

X

i=1

w

t;i

P

Y

p=1

exp

�

�

P

x

p;i

w

t

� x

p

�

=

N

X

i=1

w

t;i

P

Y

p=1

�

exp

�

�

w

t

� x

p

�

x

p;i

�

1=P

Since x

t;i

2 [0; 1] and since �

x

� 1� (1� �)x for � > 0 and x 2 [0; 1] we can upper

bound the right-hand side by:

N

X

i=1

w

t;i

P

Y

p=1

�

1�

�

1� exp

�

�

w

t

� x

p

��

x

p;i

�

1=P

=

N

X

i=1

P

Y

p=1

�

w

t;i

�

�

1� exp

�

�

w

t

� x

p

��

w

t;i

x

p;i

�

1=P

We will need the following fact: For non-negative numbers A

i;p

,

12 D.P. HELMBOLD, R.E. SCHAPIRE, Y. SINGER, M.K. WARMUTH

N

X

i=1

P

Y

p=1

A

i;p

�

P

Y

p=1

N

X

i=1

A

P

i;p

!

1=P

:

This fact can be proved by repeated application of H�older's inequality.

5

Using this fact with

A

i;p

=

�

w

t;i

�

�

1� exp

�

�

w

t

� x

p

��

w

t;i

x

p;i

�

1=P

yields an upper bound on Z

t

of

P

Y

p=1

N

X

i=1

�

w

t;i

�

�

1� exp

�

�

w

t

� x

p

��

w

t;i

x

p;i

�

!

1=P

(11)

=

P

Y

p=1

�

1�w

t

� x

p

�

1� exp

�

�

w

t

� x

p

���

1=P

:

To further bound lnZ

t

, we apply the following:

Lemma 1 For all � 2 [0; 1] and x 2 R,

ln(1� �(1� e

x

)) � �x+ x

2

=8 :

Proof: Fix � 2 [0; 1], and let

f(x) = �x+ x

2

=8� ln(1� �(1� e

x

)) :

We wish to show that f(x) � 0. We have that

f

0

(x) = �+

x

4

� g(x)

where

g(x) =

�e

x

1� �+ �e

x

:

Clearly, f

0

(0) = 0. Further,

f

00

(x) =

1

4

� g(x) + (g(x))

2

which is non-negative for all x (the minimum is attained when g(x) = 1=2).

Therefore, f is minimized when x = 0; since f(0) = 0, this proves the claim.

A COMPARISON OF NEW AND OLD ALGORITHMS 13

Taking logs of Equation (11), the upper bound on Z

t

, and then applying Lemma 1

gives us

lnZ

t

�

1

P

P

X

p=1

ln

�

1�w

t

� x

p

�

1� exp

�

�

w

t

� x

p

���

�

1

P

P

X

p=1

"

� +

1

8

�

�

w

t

� x

p

�

2

#

� � +

�

2

8r

2

since r is a lower bound on w

t

� x

p

. Plugging into Equation (10) we obtain

d

RE

(ujjw

t+1

)� d

RE

(ujjw

t

) � �

�

P

P

X

p=1

�

u � x

p

w

t

� x

p

�

+ � +

�

2

8r

2

=

�

P

P

X

p=1

�

1�

u � x

p

w

t

� x

p

�

+

�

2

8r

2

�

�

P

P

X

p=1

�

� ln

u � x

p

w

t

� x

p

�

+

�

2

8r

2

using the fact that 1� e

x

� �x for all real x. By summing over all t � T we get

�d

RE

(ujjw

1

) � d

RE

(ujjw

T

)� d

RE

(ujjw

1

)

�

�

P

T

X

t=1

P

X

p=1

�

� ln

u � x

p

w

t

� x

p

�

+

T�

2

8r

2

;

which implies the �rst bound (8) stated in the theorem. The second bound (9)

follows by straightforward algebra, noting that d

RE

(ujjw

1

) � lnN when w

1

is the

uniform probability vector.

Note that if any other upper bound K

RE

on d

RE

(ujjw

1

) is known a priori (pos-

sibly for some other choice of w

1

), then by tuning � as a function of K

RE

the lnN

term in the bound (9) of the theorem can be replaced by K

RE

. This gives a bound

of

p

2TK

RE

2r

(12)

of the additional loss of the algorithm over the ML solution.

It follows from Theorem 1 that, if we run for T iterations, then the average loss

(or average minus log-likelihood) of the w

t

's will be at most

r

lnN

2Tr

2

:

14 D.P. HELMBOLD, R.E. SCHAPIRE, Y. SINGER, M.K. WARMUTH

greater than the loss of u. Therefore, picking T = (lnN)=(2�

2

r

2

) guarantees that

at least one of the w

t

's will have a log-likelihood within � of u. Furthermore, it is

easy to �nd the best candidate w

t

that maximizes the likelihood amongw

1

; : : : ;w

T

by simply computing the likelihood of each.

When some of the components x

p;i

are zero, or very close to zero, we can use the

following algorithm which is parameterized by a real number � 2 [0; 1]. Let

~
x

p

= (1� �=N)x

p

+ (�=N)1

where 1 is the all 1's vector. As before, we maintain a probability vector w

t

which

is updated using
~
x

p

rather than x

p

:

w

t+1;i

=

w

t;i

exp(�~x

p;i

=w

t

�
~
x

p

)

P

i

w

t;i

exp(�~x

p;i

=w

t

�
~
x

p

)

:

The vector that we output is also slightlymodi�ed. Although eachw

t+1

is produced

from the previous w

t

as above, the algorithm outputs the modi�ed mixture

~
w

t

= (1� �)w

t

+ (�=N)1

and so su�ers loss � ln(
~
w

t

� x

p

).

We call this modi�ed procedure

g

EG

�;�

.

Theorem 2 Let u 2 R

N

be any probability vector, and let x

1

; : : : ;x

P

be a sequence

of instances with x

p;i

� 0 for all i; p, and max

i

x

t;i

= 1 for all p. For � 2 (0; 1=2]

and � > 0,

g

EG

�;�

produces a sequence of probability vectors
~
w

1

; : : : ;
~
w

T

such that

�

T

X

t=1

1

P

P

X

p=1

ln(
~
w

t

� x

p

) � �

T

P

P

X

p=1

ln(u � x

p

) + 2�T

+

d

RE

(ujjw

1

)

�

+

�TN

2

8�

2

: (13)

Furthermore, if w

1

is chosen to be the uniform probability vector, T � 2N

2

lnN ,

and we set

� =

�

N

2

lnN

8T

�

1=4

� =

2�

N

r

2 lnN

T

then

�

T

X

t=1

1

P

P

X

p=1

ln(
~
w

t

� x

p

) � �

T

P

P

X

p=1

ln(u � x

p

) + 2(2N

2

lnN)

1=4

(T)

3=4

: (14)

Proof: From our assumption that max

i

x

t;i

= 1, we have

A COMPARISON OF NEW AND OLD ALGORITHMS 15

~
w

t

� x

p

w

t

�
~
x

p

�

(1� �)w

t

� x

p

+ �=N

(1� �=N)w

t

� x

p

+ �=N

:

The right hand side of this inequality is decreasing as a function of w

t

� x

p

and so

is minimized when w

t

� x

p

= 1. Thus,

~
w

t

� x

p

w

t

�
~
x

p

� (1 � �) + �=N;

or equivalently,

� ln(
~
w

t

� x

p

) � � ln(w

t

�
~
x

p

)� ln(1� �+ �=N)

� � ln(w

t

�
~
x

p

) + 2� (15)

(since � � 1=2).

From Theorem 1 applied to the instances
~
x

p

, we have that

�

T

X

t=1

1

P

P

X

p=1

ln(w

t

�
~
x

p

) � �

T

P

P

X

p=1

ln(u �
~
x

p

) +

d

RE

(ujjw

1

)

�

+

�TN

2

8�

2

(16)

where we used the fact that ~x

p;i

� �=N .

Note that

u �
~
x

p

= (1� �=N)u � x

p

+ �=N � u � x

p

:

Combined with inequalities (15) and (16), and summing over all t, this gives the

�rst bound (13) of the theorem. The second bound follows from the fact that

d

RE

(ujjw

1

) � lnN when w

1

is the uniform probability vector.

From Theorem 2, it follows that the average additional loss of the w

t

's for this

algorithm over that of the ML solution is at most

O

�

N

2

lnN

T

�

1=4

!

:

This is unfortunately a rather weak bound.

4.2. Convergence proofs for gradient-projection algorithms

In this section, we prove a convergence result for the gradient-projection algorithm.

The setup is exactly as in Section 4.1.

The update rule used by GP

�

is

w

t+1

= w

t

+

�

P

P

X

p=1

1

w

t

� x

p

x

p

�

P

N

i=1

x

p;i

N

1

!

where � > 0 is the learning rate, and 1 is the all 1's vector. We assume that w

t;i

remains non-negative.

16 D.P. HELMBOLD, R.E. SCHAPIRE, Y. SINGER, M.K. WARMUTH

Theorem 3 Let u 2 R

N

be a probability vector, and let x

1

; : : : ;x

P

be a sequence

of instances with x

p;i

� r > 0 for all i; p, and max

i

x

p;i

= 1 for all p. For � > 0,

assume that GP

�

produces a sequence of probability vectors w

1

; : : : ;w

T

so that all

components of each are nonnegative. Then

�

T

X

t=1

1

P

P

X

p=1

ln(w

t

� x

p

) � �

T

P

P

X

p=1

ln(u � x

p

) +

�NT

2r

2

+

d

EUC

(ujjw

1

)

�

: (17)

Furthermore, if w

1

is chosen to be the uniform probability vector, T � 2N

2

lnN ,

and we set

� =

r

p

NT

then d

EUC

(ujjw

1

) �

1

2

and

�

T

X

t=1

1

P

P

X

p=1

ln(w

t

� x

p

) � �

T

P

P

X

p=1

ln(u � x

p

) +

1

r

p

NT: (18)

Proof: We use d

EUC

(ujjw

t

) =

1

2

ku�w

t

k

2

as the potential function since it is

the distance function used to derive the GP

�

update. We can bound the change in

potential at time t using straightforward algebra as follows.

1

2

ku�w

t+1

k

2

�

1

2

ku�w

t

k

2

=

�

P

P

X

p=1

�

1�

u � x

p

w

t

� x

p

�

+

�

2

2

1

P

P

X

p=1

1

w

t

� x

p

x

p

�

1

N

N

X

i=1

x

p;i

!

2

� �

�

P

P

X

p=1

ln

�

u � x

p

w

t

� x

p

�

+

�

2

2P

P

X

p=1

1

w

t

� x

p

x

p

�

1

N

N

X

i=1

x

p;i

!

2

In the second step we used the convexity of the function k�k

2

, and the fact that

1� e

x

� �x for all real x. Since x

p;i

2 [r; 1], and assuming that w

t;i

� 0, it follows

that this is bounded by

�

�

P

P

X

p=1

ln

�

u � x

p

w

t

� x

p

�

+

�

2

N

2r

2

:

Thus, summing over all t � T , we get

1

2

ku�w

T+1

k

2

�

1

2

ku�w

1

k

2

� �

�

P

T

X

t=1

P

X

p=1

ln

�

u � x

p

w

t

� x

p

�

+

�

2

NT

2r

2

:

So

A COMPARISON OF NEW AND OLD ALGORITHMS 17

T

X

t=1

P

X

p=1

ln

�

u � x

p

w

t

� x

p

�

�

P

2

�NT

r

2

+

ku�w

1

k

2

�

!

= P

�

�NT

2r

2

+

d

EUC

(ujjw

1

)

�

�

which implies the bound in Equation (17). The derivation of the second bound in

Equation (18) follows by straightforward algebra.

When tuning � to obtain bound (18), we used the fact that d

EUC

(ujjw

1

) is at

most

1

2

. If a better upper bound, K

EUC

, on this distance is available a priori, then

we can tune � in (17) accordingly to obtain the bound of

p

2NTK

EUC

r

(19)

on the additional loss of GP

�

above that of the ML solution.

One way to compare the bound for EG

�

(12) and the bound for GP

�

(17) is to

assume that both algorithms know the true distance to the ML solution, so that

K

RE

= d

RE

(ujjw

1

) and K

EUC

= d

EUC

(ujjw

1

). In this case each algorithm can

use the value of � minimizing its bound. If the algorithms are tuned in this way

and the starting vector w

1

is (1=N; : : : ; 1=N), then one can show that the bound

for EG

�

is never higher that the bound for GP

�

, i.e.:

p

2Td

RE

(ujjw

1

)

2r

�

p

2NTd

EUC

(ujjw

1

)

r

:

The above may be seen as theoretical support for our observation that that EG

�

always converges faster than GP

�

when the start vector is uniform and both algo-

rithms use the (empirically found) best �xed learning rate .

Theorem 3 assumes a lower bound on the x

p;i

. When no such lower bound r is

available, then we can use similar techniques to those described in Section 4.1.

5. Experimental Results

In this section we briey present and discuss a few of the empirical tests we per-

formed. In order to compare the various algorithms, data was synthetically cre-

ated from N normal distributions evenly spaced on the unit circle in R

2

. The

ith distribution was generated from a normal distribution with a mean vector

~� =

�

sin(

2�i

N

); cos(

2�i

N

)

�

. Each observation was created by uniformly picking one of

the distributions, and sampling that distribution to obtain a point

~

� = (�

1

; �

2

) 2 R

2

.

The corresponding row of X contains the probability density at

~

� for each of the N

distributions. The examples presented in this section were obtained by generating

hundreds of observations (P � 100) from at least 5 distributions (N � 5) each

with variance 1. The same qualitative results are obtained when using matrices of

di�erent sizes and other stochastic sources (such as the uniform distribution). We

tested all the described algorithms. The algorithms were tested using both �xed

18 D.P. HELMBOLD, R.E. SCHAPIRE, Y. SINGER, M.K. WARMUTH

W1
0.50.40.30.20.1

W2

0.8

0.7

0.6

0.5

0.4

Eta
0 200150100500

-0.696

-0.698

-0.700

-0.702

-0.704

-0.706

-0.708

Lo
g-

Li
ke

lih
oo

d

Figure 2. When the EG

�

update is used, the log-likelihood as a function of � may have local

maxima. At the bottom part of the �gure, the log-likelihood is plotted as a function of � for a

given w

t

. At the top, the corresponding path is plotted over the log-likelihood as a function of

the �rst two weights w

t+1;1

and w

t+1;2

(denoted in the �gure by W1 and W2).

scheduling and line-searches to �nd the best choice of � on each iteration. The line-

searches allow us to compare the updates when they are optimally tuned. Note

that when the EG

�

-update is used, the likelihood may have two local maxima as

a function of � as shown in Figure 2, so the searches must be careful to pick the

global maximum.

The optimal learning rate determined by the line-searches tended to oscillate, as

shown at the bottom part of Figure 3. When a momentum term was added, the

oscillations were damped and the convergence was accelerated.

6

Using �xed scheduling turned out to be a competitive alternative to the expensive

line-searches. Furthermore, we found that the learning rates used for deriving

the bounds in the previous section are too conservative. For the �xed scheduling

experiments reported in this section we used a higher learning rate in the range

[1::5]. All these phenomena are depicted at the top part of Figure 3.

The gradient ascent update with exponential parameterization appears inferior

to all other methods. A good �xed scheduling for that method is di�cult to obtain

as the optimal learning rate has large oscillations. The EM

�

and EG

�

updates have

about the same performance, which is expected as the EM

�

update approximates

A COMPARISON OF NEW AND OLD ALGORITHMS 19

-1.236

-1.235

-1.234

-1.233

-1.232

-1.231

10 20 30 40 50 60 70 80 90 100

Lo
g-

Li
ke

lih
oo

d

Iteration #

EGeta (with momentum)
EGeta (line search)

EGeta (eta = 3.5)
EGeta (eta = 2.5)

0

0.005

0.01

0.015

0.02

0.025

10 20 30 40 50 60 70 80 90 100

B
et

a

Iteration #

Figure 3. Top: The log-likelihood using the exponentiated gradient algorithm, with line-searches,

line-searches plus a momentum term, and �xed scheduling with � = 3:5 and � = 2:5. The �xed

schedulings are only slightly worse than setting the rate by expensive line-searches, while adding

a momentum term accelerates the increase in the likelihood. Bottom: The values of � = e

��

when using line-searches for the exponentiated gradient update. The �-value oscillates, eventually

converging to a typical value. This anomaly is common with gradient ascent algorithms.

the EG

�

update. Both methods outperform the EM algorithm, and the EM

�

and

EG

�

updates are superior to the EM algorithm even when � is set to a �xed value

greater than one (see Figure 4).

When the uniform start vector and (empirically found) best �xed learning rates

for each algorithm are used, then EG

�

(as well as EM

�

) always converge faster

than GP

�

in the experiments we have done (see Figure 5). The bounds at the end

Section 4 may be seen as theoretical support for this behavior. However when the

start vector is not uniform and the ML solution u is close to the uniform vector

then we have observed cases where GP

�

converges faster than EG

�

(and EM

�

).

One of the main observation in the experiments is the following: EG

�

and EM

�

clearly outperformGP

�

when the solution is sparse (see Figure 5). This is consistent

with other settings [8], [9], [10], where updates derived using the relative entropy

distance outperform gradient-descent-type updates when the solution is \sparse".

20 D.P. HELMBOLD, R.E. SCHAPIRE, Y. SINGER, M.K. WARMUTH

-1.240

-1.238

-1.236

-1.234

-1.232

-1.230

10 20 30 40 50 60 70 80 90 100

Lo
g-

Li
ke

lih
oo

d

Iteration #

EMeta (line search)
EMeta (eta = 2.5)

EM

-1.235

-1.234

-1.233

-1.232

-1.231

10 20 30 40 50 60 70 80 90 100

Lo
g-

Li
ke

lih
oo

d

Iteration #

EMeta
GP

Exponential Parm.

Figure 4. Top: Comparison of the performance of the EM

�

-update algorithm and the standard

EM algorithm. The EM

�

-update clearly outperforms the standard EM algorithm, even when

a �xed conservative scheduling is used. Bottom: comparison of the EM

�

-update with gradient

ascent algorithms. The gradient-projection is comparable to the EM

�

-update and the gradient

ascent update with exponential parameterization is inferior.

We also compared the performance of the various updates with second order

methods. Second order methods (also known as Newton methods) are based on

a quadratic approximation of the objective function. Near the solution we can

approximate the log-likelihood by the truncated Taylor series,

LogLike(w) � LogLike(w

t

) +rL(w

t

)

T

(w �w

t

)

+

1

2

(w �w

t

)

T

H(w

t

)(w �w

t

) ;

where H(w

t

) is the Hessian calculated at w

t

,

H

ij

(w

t

) =

@

2

@w

t;i

@w

t;j

LogLike(w

t

) :

The right-hand side is minimized at,

w

t+1

= w

t

�H(w

t

)

�1

rL(w

t

) :

A COMPARISON OF NEW AND OLD ALGORITHMS 21

-1.26

-1.22

-1.18

-1.14

-1.10

0 20 40 60 80 100 120 140 160 180 200

Lo
g-

Li
ke

lih
oo

d

Iteration #

EG
GP

Figure 5. Comparisons of the performanceof the EG

�

and GP

�

algorithms. Consider 10 Gaussian

distributionswith their centers equally spaced on the unit circle. The observations were generated

from a perturbation of the uniform mixture on only 5 of the 10 Gaussians and the algorithms are

started with the uniform start vector. This (and similar experiments) indicate that the EG

�

algorithm performs better when the optimum mixture vector u has few large components.

This is the basic Newton method, which requires calculations of second order deriva-

tives and inversion of the Hessian. Newton methods converge to a vector close to

the solution in fewer updates than the EM

�

and EG

�

updates. However, the EM

�

and EG

�

updates can often do signi�cantly more iterations than Newton methods

with the same computational e�ort. We found that when N is su�ciently large

(N � 10) the EM

�

and EG

�

algorithms converged more rapidly than the basic

Newton's method when running time (rather than number of iterations) is consid-

ered. In Figure 6 we plotted N iterations of EM

�

against one iteration of Newton's

method. In this qualitative comparison again EM

�

outperform Newton.

6. Applications and future research

We investigated various algorithms for learning the proportion vector which maxi-

mizes the likelihood of a mixture of given densities. This is a very simple mixture

estimation problem since the parameters of the densities don't have to be learned

as well. We presented some new algorithms called EG

�

and EM

�

. The EG

�

al-

gorithm uses the gradient of the log-likelihood in the exponent and the EM

�

is a

�rst-order approximation of the latter algorithm that replaces the exponentiation

by a multiplication. When the learning rate � of the EM

�

algorithm is set to one

then we get the standard EM algorithm for our simple mixture estimation problem.

Identifying the distance function associated with an update helps explain what

the update is doing and facilitates comparisons between iterative methods. Af-

ter explaining the standard algorithms using distance functions we might wonder

what are the distance functions most appropriate for a particular situation. One

important area for future research is identifying good distance functions when the

22 D.P. HELMBOLD, R.E. SCHAPIRE, Y. SINGER, M.K. WARMUTH

-7.29

-7.28

-7.27

-7.26

0 5 10 15 20 25 30 35 40

Lo
g-

Li
ke

lih
oo

d

Iteration #

Newton

Newton (Iter. x N)
EMeta (eta=2.5)

Figure 6. Comparison of EM

�

-update with second order algorithms (Newton methods). Second

order methods require fewer iterations than either the EM

�

-update algorithmwith �xed scheduling

or EM

�

with line searches. However, the basic second order method requires that the Hessian

be calculated as well as its inverse. Since these calculations require O(PN

2

+N

3

) time and the

EM

�

algorithm with �xed scheduling requires only O(PN) time per iteration we can compare a

single Newton iteration with N iterations of EM

�

. This qualitative comparison shows that the

EM

�

-update performs better even when �xed scheduling is used for the learning rate. The EG

�

algorithm behaves essentially the same as EM

�

in the experiments, however it requires slightly

more time because of the exponentiation.

parameters do not form a probability vector. We have already applied our method-

ology for deriving updates to more complicated mixture estimation problems such

as training hidden Markov models [17] and we are currently applying this method-

ology to mixtures of Gaussians with arbitrary mean and variance. In this more

complicated setting we need distance functions that depend on the means and vari-

ances given to the Gaussians as well as the mixture probabilities assigned to them.

Our framework naturally leads to on-line versions of our algorithms where only

a single observation (instead of the whole matrix) is used each iteration. In par-

ticular, we have derived an on-line version of EM

�

. Experimentally, this version

outperforms the known on-line versions of EM which is the EM

�

algorithm with

� = 1 We have also applied the on-line versions of our algorithms to a portfo-

lio selection problem [7] investigated by Cover [3]. Although Cover's analytical

bounds appear better than ours, experimental results indicate that EM

�

and EG

�

outperform Cover's algorithm on historical stock market data. Furthermore, our

algorithms are computationally e�cient while Cover's algorithm is exponential in

the number of possible investments.

Acknowledgments

We thank Jyrki Kivinen for helpful discussions and the anonymous referees for their

useful comments. Yoram Singer acknowledges the Clore Foundation for its support.

Part of this research was done while he was at the Hebrew University of Jerusalem,

A COMPARISON OF NEW AND OLD ALGORITHMS 23

and visiting the Computer and Information Sciences department at the University

of California, Santa Cruz. Manfred K. Warmuth received funding from NSF grant

IRI-9123692.

Notes

1. In the on-line setting each iteration typically uses only a single observation. It is therefore de-

sirable to preserve information about the previous observations while improving the likelihood

of the current observation.

2. A similar update for the case of linear regression was �rst given by Kivinen and Warmuth [8].

3.

P

N

i=1

w

t;i

rL(w

t

)

i

=

P

N

i=1

1

P

P

P

p=1

w

t;i

x

p;i

x

p

�w

t

=

1

P

P

P

p=1

w

t

�x

p

x

p

�w

t

= 1.

4. This algorithm's performance was analyzed in the PAC model in [1].

5. In one form, H�older's inequality states that, for non-negative a

i

, b

i

,

X

i

a

i

b

i

�

X

i

a

p

i

!

1=p

X

i

b

q

i

!

1=q

for any positive p; q satisfying 1=p+ 1=q = 1.

6. The conjugate gradient search is a method for iteratively searching a quadratic cost func-

tion [11], [6]. When the cost function is non-quadratic, as is the likelihood function in our

case, a variant of the conjugate gradient method can be devised. This variant, termed partial

conjugate gradient (PCG), is restarted after every K conjugate gradient steps, so that the

search direction every K iteration becomes the gradient. Adding a momentum term can be

seen as an approximation of the partial conjugate gradient algorithm, with no restarts (i.e.,

the PCG method with K !1).

References

1. N. Abe, J. Takeuchi, and M. K. Warmuth. Polynomial learnability of probablistic con-

cepts with respect to the Kullback-Leibler divergence. In Proceedings of the Fourth Annual

Workshop on Computational Learning Theory, pages 277{289. Morgan Kaufmann, 1991.

2. J. Bridle. Probabilistic interpretation of feedforward classi�cation network outputs with

relationships to statistical pattern recognition. In F. Fogelman-Souli and J. H�erault, editors,

Neuro-Computing: Algorithms, Architectures, and Applications. New York: Springer Verlag,

1989.

3. T. Cover. Universal portfolios. Mathematical Finance, 1(1):1{29, 1991.

4. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum-likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society, B39:1{38, 1977.

5. R. O. Duda and P. E. Hart. Pattern Classi�cation and Scene Analysis. Wiley, 1973.

6. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns-Hopkins University Press,

1989.

7. D. Helmbold, R. E. Schapire, Y. Singer, and M. K. Warmuth. On-line portfolio selection

using multiplicative updates. In Proc. 13th International Conference on Machine Learning,

pages 243{251. Morgan Kaufmann, San Francisco, 1996.

8. J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient updates. In Pro-

ceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 1995.

9. J. Kivinen and M. K. Warmuth. The perceptronalgorithm vs. winnow: linear vs. logarithmic

mistake bounds when few input variables are relevant. In Proceedings of the Eighth Annual

Workshop on Computational Learning Theory, July 1995.

24 D.P. HELMBOLD, R.E. SCHAPIRE, Y. SINGER, M.K. WARMUTH

10. N. Littlestone. Learning when irrelevant attributes abound: A new linear-threshold algo-

rithm. Machine Learning, 2:285{318, 1988.

11. D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, 1984.

12. X.L. Meng and D.B. Rubin. Recent extensions of the EM algorithm (with discussion). In

J.M. Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith, editors, Bayesian Statistics, 4.

Oxfod: Clarendon Press, 1992.

13. R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justi�es incremental

and other variants. Unpublished manuscript, 1993.

14. B. C. Peters and H. F. Walker. An iterative procedure for obtaining maximum-likelihood

estimates of the parameters for a mixture of normal distributions. SIAM Journal of Applied

Mathematics, 35:362{378, 1978.

15. B. C. Peters and H. F. Walker. The numerical evaluation of the maximum-likelihood esti-

mates of a subset of mixture proportions. SIAM Journal of Applied Mathematics, 35:447{452,

1978.

16. R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood, and the EM algo-

rithm. Siam Review, 26:195{239, 1984.

17. Y. Singer and M. K. Warmuth. Training algorithms for hidden markov models using entropy

based distance functions. To appear in Advances in Neural Information Processing Systems,

8, 1996.

