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For such a simple algorithm, it is fascinating and remarkable what a rich diversity of interpre-
tations, views, perspectives and explanations have emerged of AdaBoost. Originally, AdaBoost
was proposed as a “boosting” algorithm in the technical sense of the word: given access to “weak”
classifiers, just slightly better in performance than random guessing, and given sufficient data, a true
boosting algorithm can provably produce a combined classifier with nearly perfect accuracy (Freund
and Schapire, 1997). AdaBoost has this property, but it also has been shown to be deeply connected
with a surprising range of other topics, such as game theory, on-line learning, linear programming,
logistic regression and maximum entropy (Breiman, 1999; Collins et al., 2002; Demiriz et al., 2002;
Freund and Schapire, 1996, 1997; Kivinen and Warmuth, 1999; Lebanon and Lafferty, 2002). As
we discuss further below, AdaBoost can been seen as a method for maximizing the “margins” or
confidences of the predictions made by its generated classifier (Schapire et al., 1998). The current
paper by Mease and Wyner, of course, focuses on another perspective, the so-called statistical view
of boosting. This interpretation, particularly as expounded by Friedman et al. (2000), focuses on the
algorithm as a stagewise procedure for minimizing the exponential loss function, which is related to
the loss minimized in logistic regression, and whose minimization can be viewed, in a certain sense,
as providing estimates of the conditional probability of the label.

Taken together, these myriad interpretations of AdaBoost form a robust theory of the algorithm
that provides understanding from an extraordinary range of points of view in which each perspec-
tive tells us something unique about the algorithm. The statistical view, for instance, has been of
tremendous value, allowing for the practical conversion of AdaBoost’s predictions into conditional
probabilities, as well as the algorithm’s generalization and extension to many other loss functions
and learning problems.

Still, each perspective has its weaknesses, which are important to identify to keep our theory in
touch with reality. The current paper is superb in exposing empirical phenomena that are apparently
difficult to understand according to the statistical view. From a theoretical perspective, the statistical
interpretation has other weaknesses. As discussed by Mease and Wyner, this interpretation does not
explain AdaBoost’s observed tendency not to overfit, particularly in the absence of regularization
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or early stopping. It also says little about how well AdaBoost will generalize when provided with
a finite data set, nor how its ability to generalize is dependent on the complexity or simplicity of
the base classifiers, an issue that arises in the experiments comparing decision stumps and decision
trees in this role.

Much of the difficulty arises from the fact that AdaBoost is a classification algorithm (at least
as it is used and studied in the current paper). This means that AdaBoost’s purpose is to find a rule
h that, given X , predicts one of the labels h(X), and that attempts to achieve minimal probability
of an incorrect classification (in which h(X) disagrees with the true label Y ). This is quite different
from the problem of estimating the conditional probability P(Y |X). An accurate estimate of this
conditional probability is a sufficient, but certainly not a necessary, condition for minimizing the
classification error. A weaker requirement that is still sufficient is to estimate the set of inputs for
which P(Y = +1|X) > 1/2. In most cases, this requirement is much weaker than the requirement of
getting good estimates of conditional probabilities. For example, if P(Y = +1|X) = 0.49 then our
estimate of the conditional probability need be accurate to within 1%, while if P(Y = +1|X) = 0.2
the accuracy we need is only 30%.

This simple observation demonstrates a crucial shortcoming in the statistical interpretation of
Adaboost, and undermines many of its apparent consequences, including the following:

• Adaboost can be interpreted as a method for maximizing conditional likelihood. If the goal is
not to estimate the conditional probability, there is no reason to maximize likelihood.

• A question of central importance is whether Adaboost is asymptotically consistent. When
evaluating probability estimators, it is standard procedure to start by verifying that the esti-
mator is unbiased. Once the estimator is confirmed to be unbiased, the next question is the
rate at which its variance decreases with the size of the sample. Again, as the learning prob-
lem in the case of classification is a weaker one, it is not clear that this is the relevant sequence
of questions that a theoretician should ask.

• Decision stumps should be used as base classifiers when the input variables are independent
This argument is based on the assumption that the goal is to estimate probabilities.

The view of AdaBoost as a method for minimizing exponential loss, though in some ways quite
useful, can also lead us very much astray, as pointed out to some degree by Mease and Wyner. Taken
to an extreme, this view suggests that any method for minimizing exponential loss will be equally
effective, and is likely to be much better if designed with speed and this explicit goal in mind. How-
ever, this is quite false. Indeed, any real-valued classifier F which classifies the training examples
perfectly, so that yiF(xi) > 0 for each training example (xi,yi), can be modified to minimize the
exponential loss ∑i e−yiF(xi) simply by multiplying F by an arbitrarily large positive constant. This
scaling of F of course has no impact on the classifications that it makes. Thus, in the common case
in which an exponential loss of zero is possible, minimization of this loss means nothing more than
that the computed classifier F has a classification error of zero on the training set. The minimization
of this particular loss tells us nothing more, and leaves us as open to overfitting as any other method
whose only purpose is minimization of the training error.

This means that, in order to understand AdaBoost, which does indeed minimize exponential
loss, we need to go well beyond this narrow view. In particular, we need to consider the dynamics
of AdaBoost—not just what it is minimizing, but how it goes about doing it.
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Like other interpretations of AdaBoost, although the statistical view has its weaknesses, it also
has its strengths, as noted above. Still, to fully understand AdaBoost, particularly in the face of
such deficiencies, it seems unavoidable that we consider a range of explanations and modes of
understanding. Where the statistical view may be lacking, the margins explanation in particular can
often shed considerable light.

Briefly, the margin of a labeled example with respect to a classifier is a real number that in-
tuitively measures the confidence of the classifier in its prediction on that example. More pre-
cisely, in the notation of Mease and Wyner, the margin on labeled example (x,y) is defined to
be yFM(x)/∑m αm. Equivalently, viewing the prediction of AdaBoost’s combined classifier as a
weighted majority vote of the base classifiers, the margin is the weighted fraction of base classifiers
voting for the correct label minus the weighted fraction voting for the incorrect label.

The margins theory (Schapire et al., 1998) provides a complete analysis of AdaBoost in two
parts: First, AdaBoost’s generalization error can be bounded in terms of the distribution of margins
of training examples, as well as the number of training examples and the complexity of the base
classifiers. And second, it can be proved that AdaBoost’s dynamics have a strong tendency to
increase the margins of the training examples in a manner that depends on the accuracy of the base
classifiers on the distributions on which they are trained.

This theory is quite useful for understanding AdaBoost in many ways (despite a few shortcom-
ings of its own—see, for instance, Breiman (1999) as well as the recent work of Reyzin and Schapire
(2006)). For starters, the theory, in which performance depends on margins rather than the number
of rounds of boosting, predicts the same lack of overfitting commonly observed in practice. The
theory provides non-asymptotic bounds which, although usually too loose for practical purposes,
nevertheless illuminate qualitatively how the generalization error depends on the number of training
examples, the margins, and the accuracy and complexity of the base classifiers. Finally, the the-
ory is concerned directly with classification accuracy, rather than the algorithm’s ability to estimate
conditional probabilities, which is in fact entirely irrelevant to the theory.

Moreover, some of the phenomena observed by Mease and Wyner do not appear so mysterious
when viewed in terms of the margins theory. For instance, the experiments in Section 3.1 show
AdaBoost overfitting with stumps but not decision trees. In terms of margins, decision trees have
higher complexity, which tends to hurt generalization, but also tend to produce much larger margins,
which tend to improve generalization, an effect that can easily be strong enough to compensate for
the increased complexity. Moreover, according to the theory, these larger margins tend to provide
immunity against overfitting, and indeed, overfitting is expected exactly in the case that we are using
base classifiers producing small margins, such as decision stumps. This is just what is observed in
Figure 1.

In sum, the various theories of boosting, including the margins theory and the statistical view,
are all imperfect but are largely complementary, each with its strengths and weaknesses, and each
providing another piece of the AdaBoost puzzle. It is when they are taken together that we have
the most complete picture of the algorithm, and the best chances of understanding, generalizing and
improving it.
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