
Machine Learning, 43, 265-291, 2001.

Drifting Games

Robert E. Schapire (schapire@research.att.com)

AT&T Labs � Research, Shannon Laboratory, 180 Park Avenue, Room A279,

Florham Park, NJ 07932-0971

Abstract. We introduce and study a general, abstract game played between two

players called the shepherd and the adversary. The game is played in a series of

rounds using a �nite set of \chips" which are moved about in IR

n

. On each round,

the shepherd assigns a desired direction of movement and an importance weight

to each of the chips. The adversary then moves the chips in any way that need

only be weakly correlated with the desired directions assigned by the shepherd. The

shepherd's goal is to cause the chips to be moved to low-loss positions, where the

loss of each chip at its �nal position is measured by a given loss function.

We present a shepherd algorithm for this game and prove an upper bound on its

performance. We also prove a lower bound showing that the algorithm is essentially

optimal for a large number of chips. We discuss computational methods for e�ciently

implementing our algorithm.

We show that our general drifting-game algorithm subsumes some well studied

boosting and on-line learning algorithms whose analyses follow as easy corollaries of

our general result.

Keywords: boosting, on-line learning algorithms

1. Introduction

We introduce a general, abstract game played between two players

called the shepherd

1

and the adversary. The game is played in a series

of rounds using a �nite set of \chips" which are moved about in IR

n

.

On each round, the shepherd assigns a desired direction of movement

to each of the chips, as well as a nonnegative weight measuring the

relative importance that each chip be moved in the desired direction.

In response, the adversary moves each chip however it wishes, so long as

the relative movements of the chips projected in the directions chosen

by the shepherd are at least �, on average. Here, the average is taken

with respect to the importance weights that were selected by the shep-

herd, and � � 0 is a given parameter of the game. Since we think of �

as a small number, the adversary need move the chips in a fashion that

is only weakly correlated with the directions desired by the shepherd.

The adversary is also restricted to choose relative movements for the

1

In an earlier version of this paper, the \shepherd" was called the \drifter,"

a term that was found by some readers to be confusing. The name of the main

algorithm has also been changed from \Shepherd" to \OS."

c

 2001 Kluwer Academic Publishers. Printed in the Netherlands.

p.1

2 R. E. Schapire

chips from a given set B � IR

n

. The goal of the shepherd is to force the

chips to be moved to low-loss positions, where the loss of each chip at

its �nal position is measured by a given loss function L. A more formal

description of the game is given in Section 2.

We present in Section 4 a new algorithm called \OS" for playing this

game in the role of the shepherd, and we analyze the algorithm's per-

formance for any parameterization of the game meeting certain natural

conditions. Under the same conditions, we also prove in Section 5 that

our algorithm is the best possible when the number of chips becomes

large.

As spelled out in Section 3, the drifting game is closely related to

boosting, the problem of �nding a highly accurate classi�cation rule by

combining many weak classi�ers or hypotheses. The drifting game and

its analysis are generalizations of Freund's (1995) \majority-vote game"

which was used to derive his boost-by-majority algorithm. This latter

algorithm is optimal in a certain sense for boosting binary problems us-

ing weak hypotheses which are restricted to making binary predictions.

However, the boost-by-majority algorithm has never been generalized

to multiclass problems, nor to a setting in which weak hypotheses may

\abstain" or give graded predictions between two classes. The gen-

eral drifting game that we study leads immediately to new boosting

algorithms for these settings. By our result on the optimality of the

OS algorithm, these new boosting algorithms are also best possible,

assuming as we do in this paper that the �nal hypothesis is restricted

in form to a simple majority vote. We do not know if the derived

algorithms are optimal without this restriction.

In Section 6, we discuss computational methods for implementing

the OS algorithm.We give a useful theorem for handling games in which

the loss function enjoys certain monotonicity properties. We also give a

more general technique using linear programming for implementing OS

in many settings, including the drifting game that corresponds to mul-

ticlass boosting. In this latter case, the algorithm runs in polynomial

time when the number of classes is held constant.

In Section 7, we discuss the analysis of several drifting games cor-

responding to previously studied learning problems. For the drifting

games corresponding to binary boosting with or without abstaining

weak hypotheses, we show how to implement the algorithm e�ciently.

We also show that there are parameterizations of the drifting game

under which OS is equivalent to a simpli�ed version of the AdaBoost

algorithm (Freund and Schapire, 1997; Schapire and Singer, 1999),

as well as Cesa-Bianchi et al.'s (1996) BW algorithm and Littlestone

and Warmuth's (1994) weighted majority algorithm for combining the

advice of experts in an on-line learning setting. Analyses of these al-

p.2

Drifting Games 3

parameters: number of rounds T

dimension of space n

set B � IR

n

of permitted relative movements

norm l

p

where p � 1

minimum average drift � � 0

loss function L : IR

n

! IR

number of chips m

for t = 1; : : : ; T :

� shepherd chooses weight vector w

t

i

2 IR

n

for each chip i

� adversary chooses drift vector z

t

i

2 B for each chip i so that

m

X

i=1

w

t

i

� z

t

i

� �

m

X

i=1

jjw

t

i

jj

p

the �nal loss su�ered by the shepherd is

1

m

m

X

i=1

L

T

X

t=1

z

t

i

!

Figure 1. The drifting game.

gorithms follow as easy corollaries of the analysis we give for general

drifting games.

2. Drifting games

We begin with a formal description of the drifting game. An outline of

the game is shown in Fig. 1. There are two players in the game called

the shepherd and the adversary. The game is played in T rounds using

m chips. On each round, the shepherd speci�es a weight vector w

t

i

2 IR

n

for each chip i. The direction of this vector, v

t

i

= w

t

i

=jjw

t

i

jj

p

, speci�es a

desired direction of drift, while the length of the vector jjw

t

i

jj

p

speci�es

the relative importance of moving the chip in the desired direction. In

response, the adversary chooses a drift vector z

t

i

for each chip i. The

adversary is constrained to choose each z

t

i

from a �xed set B � IR

n

.

Moreover, the z

t

i

's must satisfy

X

i

w

t

i

� z

t

i

� �

X

i

jjw

t

i

jj

p

(1)

or equivalently

P

i

jjw

t

i

jj

p

v

t

i

� z

t

i

P

i

jjw

t

i

jj

p

� � (2)

p.3

4 R. E. Schapire

where � � 0 is a �xed parameter of the game. (Here and throughout

the paper, when clear from context,

P

i

denotes

P

m

i=1

; likewise, we

will shortly use the notation

P

t

for

P

T

t=1

.) In words, v

t

i

� z

t

i

is the

amount by which chip i has moved in the desired direction. Thus, the

left hand side of Eq. (2) represents a weighted average of the drifts of

the chips projected in the desired directions where chip i's projected

drift is weighted by jjw

t

i

jj

p

=

P

i

jjw

t

i

jj

p

. We require that this average

projected drift be at least �.

The position of chip i at time t, denoted by s

t

i

, is simply the sum

of the drifts of that chip up to that point in time. Thus, s

1

i

= 0 and

s

t+1

i

= s

t

i

+ z

t

i

. The �nal position of chip i at the end of the game is

s

T+1

i

.

At the end of T rounds, we measure the shepherd's performance

using a function L of the �nal positions of the chips; this function is

called the loss function. Speci�cally, the shepherd's goal is to minimize

1

m

X

i

L(s

T+1

i

):

Summarizing, we see that a game is speci�ed by several parameters:

the number of rounds T ; the dimension n of the space; a norm jj�jj

p

on

IR

n

; a set B � IR

n

; a minimum drift constant � � 0; a loss function L;

and the number of chips m.

Since the length of weight vectors w are measured using an l

p

-norm,

it is natural to measure drift vectors z using a dual l

q

-norm where

1=p+ 1=q = 1. When clear from context, we will generally drop p and

q subscripts and write simply jjwjj or jjzjj.

As an example of a drifting game, suppose that the game is played

on the real line and that the shepherd's goal is to get as many chips

as possible into the interval [2; 7]. Suppose further that the adversary

is constrained to move each chip left or right by one unit, and that,

on each round, 10% of the chips (as weighted by the shepherd's cho-

sen distribution over chips) must be moved in the shepherd's desired

direction. Then for this game, n = 1, B = f�1;+1g and � = 0:1. Any

norm will do (since we are working in just one dimension), and the loss

function is

L(s) =

�

0 if s 2 [2; 7]

1 otherwise.

We will return to this example later in the paper.

Drifting games bear a certain resemblence to the kind of games stud-

ied in Blackwell's (1956) celebrated approachability theory. However,

it is unclear what the exact relationship is between these two types of

games and whether one type is a special case of the other.

p.4

Drifting Games 5

3. Relation to boosting

In this section, we describe how the general game of drift relates directly

to boosting. In the simplest boosting model, there is a boosting algo-

rithm that has access to a weak learning algorithm that it calls in a se-

ries of rounds. There arem given labeled examples (x

1

; y

1

); : : : ; (x

m

; y

m

)

where x

i

2 X and y

i

2 f�1;+1g. On each round t, the booster chooses

a distribution D

t

(i) over the examples. The weak learner then must

generate a weak hypothesis h

t

: X ! f�1;+1g whose error is at most

1=2�
 with respect to distribution D

t

. That is,

Pr

i�D

t

[y

i

6= h

t

(x

i

)] �

1

2

�
: (3)

Here,
 > 0 is known a priori to both the booster and the weak learner.

After T rounds, the booster outputs a �nal hypothesis which we here

assume is a majority vote of the weak hypotheses:

H(x) = sign

X

t

h

t

(x)

!

: (4)

For our purposes, the goal of the booster is to minimize the fraction of

errors of the �nal hypothesis on the given set of examples:

2

1

m

jfi : y

i

6= H(x

i

)gj : (5)

We can recast boosting as just described as a special-case drifting

game; a similar game, called the \majority-vote game," was studied

by Freund (1995) for this case. The chips are identi�ed with examples,

and the game is one-dimensional so that n = 1. The drift of a chip z

t

i

is

+1 if example i is correctly classi�ed by h

t

and �1 otherwise; that is,

z

t

i

= y

i

h

t

(x

i

) and B = f�1;+1g. The weight w

t

i

is formally permitted

to be negative, something that does not make sense in the boosting

setting; however, for the optimal shepherd described in the next section,

this weight will always be nonnegative for this game (by Theorem 7), so

we henceforth assume that w

t

i

� 0. The distribution D

t

(i) corresponds

to w

t

i

=

P

i

w

t

i

. Then the condition in Eq. (3) is equivalent to

X

i

"

w

t

i

P

i

w

t

i

1� z

t

i

2

!#

�

1

2

�

or

X

i

w

t

i

z

t

i

� 2

X

i

w

t

i

: (6)

2

Of course, the real goal of a boosting algorithm is to �nd a hypothesis with

low generalization error. In this paper, we only focus on the simpli�ed problem of

minimizing error on the given training examples.

p.5

6 R. E. Schapire

This is the same as Eq. (1) if we let � = 2
. Finally, if we de�ne the

loss function to be

L(s) =

�

1 if s � 0

0 if s > 0

(7)

then

1

m

X

i

L(s

T+1

i

) (8)

is exactly equal to Eq. (5).

Our main result on playing drifting games yields in this case exactly

Freund's boost-by-majority algorithm (1995). There are numerous vari-

ants of this basic boosting setting to which Freund's algorithm has

never been generalized and analyzed. For instance, we have so far

required weak hypotheses to output values in f�1;+1g. It is natu-

ral to generalize this model to allow weak hypotheses to take values

in f�1; 0;+1g so that the weak hypotheses may \abstain" on some

examples, or to take values in [�1;+1] so that a whole range of values

are possible. These correspond to simple modi�cations of the drifting

game described above in which we simply change B to f�1; 0;+1g or

[�1;+1]. As before, we require that Eq. (6) hold for all weak hypothe-

ses and we attempt to design a boosting algorithm which minimizes

Eq. (8). For both of these cases, we are able to derive analogs of the

boost-by-majority algorithm which we prove are optimal in a particular

sense.

Another direction for generalization is to the non-binary multiclass

case in which labels y

i

belong to a set Y = f1; : : : ; ng, n > 2. Following

generalizations of the boosting algorithm AdaBoost to the multiclass

case (Freund and Schapire, 1997; Schapire and Singer, 1999), we allow

the booster to assign weights both to examples and labels. That is, on

each round, the booster devises a distribution D

t

(i; `) over examples i

and labels ` 2 Y . The weak learner then computes a weak hypothesis

h

t

: X �Y ! f�1;+1g which must be correct on a non-trivial fraction

of the example-label pairs. That is, if we de�ne

�

y

(`) =

�

+1 if y = `

�1 otherwise

then we require

Pr

(i;`)�D

t

[h

t

(x

i

; `) 6= �

y

i

(`)] �

1

2

�
: (9)

The �nal hypothesis, we assume, is again a plurality vote of the weak

hypotheses:

H(x) = argmax

y2Y

X

t

h

t

(x; y): (10)

p.6

Drifting Games 7

We can cast this multiclass boosting problem as a drifting game

as follows. We have n dimensions, one per class. It will be convenient

for the �rst dimension always to correspond to the correct label, with

the remaining n�1 dimensions corresponding to incorrect labels. To do

this, let us de�ne a map �

`

: IR

n

! IR

n

which simply swaps coordinates

1 and `, leaving the other coordinates untouched. The weight vectors

w

t

i

correspond to the distribution D

t

, modulo swapping of coordinates,

a correction of sign and normalization:

D

t

(i; `) =

�

�

[�

y

i

(w

t

i

)]

`

�

�

P

i

jjw

t

i

jj

:

The norm used here to measure weight vectors is l

1

-norm. Also, it will

follow from Theorem 7 that, for optimal play of this game, the �rst

coordinate of w

t

i

is always nonnegative and all other coordinates are

nonpositive. The drift vectors z

t

i

are derived as before from the weak

hypotheses:

z

t

i

= �

y

i

(hh

t

(x

i

; 1); : : : ; h

t

(x

i

; n)i):

It can be veri�ed that the condition in Eq. (9) is equivalent to Eq. (1)

with � = 2
. For binary weak hypotheses, B = f�1;+1g

n

.

The �nal hypothesis H makes a mistake on example (x; y) if and

only if

X

t

h

t

(x; y) � max

`:`6=y

X

t

h

t

(x; `):

Therefore, we can count the fraction of mistakes of the �nal hypothesis

in the drifting game context as

1

m

X

i

L(s

T+1

i

)

where

L(s) =

�

1 if s

1

� maxfs

2

; : : : ; s

n

g

0 otherwise.

(11)

Thus, by giving an algorithm for the general drifting game, we also ob-

tain a generalization of the boost-by-majority algorithm for multiclass

problems. The algorithm can be implemented in this case in polynomial

time for a constant number of classes n, and the algorithm is provably

best possible in a particular sense.

We note also that a simpli�ed form of the AdaBoost algorithm (Fre-

und and Schapire, 1997; Schapire and Singer, 1999) can be derived as

an instance of the OS algorithm simply by changing the loss function

L in Eq. (7) to an exponential L(s) = exp(��s) for some � > 0. More

details on this game are given in Section 7.2.

p.7

8 R. E. Schapire

Besides boosting problems, the drifting game also generalizes the

problem of learning on-line with a set of \experts" (Cesa-Bianchi et al.,

1997; Littlestone and Warmuth, 1994). In particular, the BW algorithm

of Cesa-Bianchi et al. (1996) and the weighted majority algorithm of

Littestone and Warmuth (1994) can be derived as special cases of our

main algorithm for a particular natural parameterization of the drifting

game. Details are given in Section 7.3.

4. The algorithm and its analysis

We next describe our algorithm for playing the general drifting game

of Section 2. Like Freund's boost-by-majority algorithm (1995), the

algorithm we present here uses a \potential function" which is central

both to the workings of the algorithm and its analysis. This function

can be thought of as a \guess" of the loss that we expect to su�er for

a chip at a particular position and at a particular point in time.

We denote the potential of a chip at position s on round t by �

t

(s).

The �nal potential is the actual loss so that �

T

= L. The potential

functions �

t

for earlier time steps are de�ned inductively:

�

t�1

(s) = min

w2IR

n

sup

z2B

(�

t

(s+ z) +w � z� �jjwjj

p

): (12)

We will show later that, under natural conditions, the minimum above

actually exists. Moreover, the minimizing vector w is the one used by

the shepherd for the algorithm we now present. We call our shepherd

algorithm \OS" for \optimal shepherd." The weight vector w

t

i

chosen

by OS for chip i is any vector w which minimizes

sup

z2B

(�

t

(s

t

i

+ z) +w � z� �jjwjj

p

):

Returning to the example at the end of Section 2, Fig. 2 shows the

potential function �

t

and the weights that would be selected by OS as

a function of the position of each chip for various choices of t. For this

�gure, T = 20.

We will need some natural assumptions to analyze this algorithm.

The �rst assumption states merely that the allowed drift vectors in B

are bounded; for convenience, we assume they have norm at most one.

ASSUMPTION 1. sup

z2B

jjzjj

q

� 1.

We next assume that the loss function L is bounded.

ASSUMPTION 2. There exist �nite L

min

and L

max

such that L

min

�

L(s) � L

max

for all s 2 IR

n

.

p.8

Drifting Games 9

−10 −5 0 5 10 15 20

−0.5

0

0.5

1

position

po
te

nt
ia

l /
 w

ei
gh

t

t=0

−10 −5 0 5 10 15 20

−0.5

0

0.5

1

position

po
te

nt
ia

l /
 w

ei
gh

t

t=5

−10 −5 0 5 10 15 20

−0.5

0

0.5

1

position

po
te

nt
ia

l /
 w

ei
gh

t

t=10

−10 −5 0 5 10 15 20

−0.5

0

0.5

1

position

po
te

nt
ia

l /
 w

ei
gh

t

t=15

−10 −5 0 5 10 15 20

−0.5

0

0.5

1

position

po
te

nt
ia

l /
 w

ei
gh

t

t=19

−10 −5 0 5 10 15 20

−0.5

0

0.5

1

position

po
te

nt
ia

l /
 w

ei
gh

t

t=20

Figure 2. Plots of the potential function (top curve in each �gure) and the weights

selected by OS (bottom curves) as a function of the position of a chip in the example

game at the end of Section 2 for various choices of t and with T = 20. The vertical

dotted lines show the boundary of the goal interval [2; 7]. Curves are only meaningful

at integer values.

In fact, this assumption need only hold for all s with jjsjj

q

� T since

positions outside this range are never reached, given Assumption 1.

Finally, we assume that, for any direction v, it is possible to choose

a drift whose projection onto v is more than � by a constant amount.

ASSUMPTION 3. There exists a number � > 0 such that for all w 2

IR

n

there exists z 2 B with w � z � (� + �)jjwjj.

p.9

10 R. E. Schapire

LEMMA 1. Given Assumptions 1, 2 and 3, for all t = 0; : : : ; T :

1. the minimum in Eq. (12) exists; and

2. L

min

� �

t

(s) � L

max

for all s 2 IR

n

.

Proof. By backwards induction on t. The base cases are trivial. Let

us �x s and let F (z) = �

t

(s+ z). Let

H(w) = sup

z2B

(F (z) +w � z� �jjwjj):

Using Assumption 1, for any w, w

0

:

jH(w

0

)�H(w)j � sup

z2B

�

�

(F (z) +w � z� �jjwjj) � (F (z) +w

0

� z� �jjw

0

jj)

�

�

= sup

z2B

�

�

(w�w

0

) � z+ �(jjw

0

jj � jjwjj)

�

�

� (1 + �)jjw

0

�wjj:

Therefore, H is continuous. Moreover, for w 2 IR

n

, by Assumptions 2

and 3 (as well as our inductive hypothesis),

H(w) � L

min

+ (� + �)jjwjj � �jjwjj = L

min

+ �jjwjj: (13)

Since

H(0) � L

max

; (14)

it follows that H(w) > H(0) if jjwjj > (L

max

� L

min

)=�. Thus, for

computing the minimum of H, we only need consider points in the

compact set

�

w : jjwjj �

L

max

� L

min

�

�

:

Since a continuous function over a compact set has a minimum, this

proves Part 1.

Part 2 follows immediately from Eqs (13) and (14).

We next prove an upper bound on the loss su�ered by a shepherd

employing the OS algorithm against any adversary. This is the main

result of this section. We will shortly see that this bound is essentially

best possible for any algorithm. It is important to note that these

theorems tell us much more than the almost obvious point that the

optimal thing to do is whatever is best in a minmax sense. These

theorems prove the nontrivial fact that (nearly) minmax behavior can

be obtained without the simultaneous consideration of all of the chips

at once. Rather, we can compute each weight vector w

t

i

merely as a

function of the position of chip i, without consideration of the positions

of any of the other chips.

p.10

Drifting Games 11

THEOREM 2. Under the condition of Assumptions 1, 2 and 3, the

�nal loss su�ered by the OS algorithm against any adversary is at most

�

0

(0) where the functions �

t

are de�ned above.

Proof. Following Freund's analysis (1995), we show that the total

potential never increases. That is, we prove by induction that

X

i

�

t

(s

t+1

i

) �

X

i

�

t�1

(s

t

i

): (15)

This implies, through repeated application of Eq. (15), that

1

m

X

i

L(s

T+1

i

) =

1

m

X

i

�

T

(s

T+1

i

) �

1

m

X

i

�

0

(s

1

i

) = �

0

(0)

as claimed.

The de�nition of �

t�1

given in Eq. (12) implies that for w

t

i

chosen

by the OS algorithm, and for all z 2 B and all s 2 IR

n

:

�

t

(s+ z) +w

t

i

� z� �jjw

t

i

jj � �

t�1

(s):

Therefore,

X

i

�

t

(s

t+1

i

) =

X

i

�

t

(s

t

i

+ z

t

i

)

�

X

i

(�

t�1

(s

t

i

)�w

t

i

� z

t

i

+ �jjw

t

i

jj)

�

X

i

�

t�1

(s

t

i

)

where the last inequality follows from Eq. (1).

Returning again to the example at the end of Section 2, Fig. 3 shows

a plot of the bound �

0

(0) as a function of the total number of rounds

T . It is rather curious that the bound is not monotonic in T (even

discounting the jagged nature of the curve caused by the di�erence

between even and odd length games). Apparently, for this game, having

more time to get the chips into the goal region can actually hurt the

shepherd.

5. A lower bound

In this section, we prove that the OS algorithm is essentially optimal

in the sense that, for any shepherd algorithm, there exists an adversary

capable of forcing a loss matching the upper bound of Theorem 2 in

the limit of a large number of chips. Speci�cally, we prove the following

theorem, the main result of this section:

p.11

12 R. E. Schapire

10
0

10
1

10
2

10
3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

op
tim

al
 lo

ss

Figure 3. A plot of the loss bound �

0

(0) as a function of the total number of rounds

T for the example game at the end of Section 2. The jagged nature of the curve is

due to the di�erence between a game with an odd or an even number of steps.

THEOREM 3. Let A be any shepherd algorithm for playing a drifting

game satisfying Assumptions 1, 2 and 3 where all parameters of the

game are �xed, except the number of chips m. Let �

t

be as de�ned

above. Then for any � > 0, there exists an adversary such that for m

su�ciently large, the loss su�ered by algorithm A is at least �

0

(0)� �.

To prove the theorem, we will need two lemmas. The �rst gives

an abstract result on computing a minimax of the kind appearing in

Eq. (12). The second lemma uses the �rst to prove a characterization

of �

t

in a form amenable to use in the proof of Theorem 3.

LEMMA 4. Let S be any nonempty, bounded subset of IR

2

. Let C be

the convex hull of S. Then

inf

�2IR

supfy + �x : (x; y) 2 Sg = supfy : (0; y) 2 Cg:

Proof. Let C be the closure of C. First, for any � 2 IR,

supfy + �x : (x; y) 2 Sg = supfy + �x : (x; y) 2 Cg

= supfy + �x : (x; y) 2 Cg: (16)

p.12

Drifting Games 13

The �rst equality follows from the fact that, if (x; y) 2 C then

(x; y) =

N

X

i=1

p

i

(x

i

; y

i

)

for some positive integer N , p

i

2 [0; 1],

P

i

p

i

= 1, (x

i

; y

i

) 2 S. But then

y + �x =

N

X

i=1

p

i

(y

i

+ �x

i

) � max

i

(y

i

+ �x

i

):

The second equality in Eq. (16) follows simply because the supremum

of a continuous function on any set is equal to its supremum over the

closure of the set. For this same reason,

supfy : (0; y) 2 Cg = supfy : (0; y) 2 Cg: (17)

Because C is closed, convex and bounded, and because the func-

tion y + �x is continuous, concave in (x; y) and convex in �, we can

reverse the order of the \inf sup" (see, for instance, Corollary 37.3.2 of

Rockafellar (1970)). That is,

inf

�2IR

sup

(x;y)2C

(y + �x) = sup

(x;y)2C

inf

�2IR

(y + �x): (18)

Clearly, if x 6= 0 then

inf

�2IR

(y + �x) = �1:

Thus, the right hand side of Eq. (18) is equal to

supfy : (0; y) 2 Cg:

Combining with Eqs. (16) and (17) immediately gives the result.

LEMMA 5. Under the condition of Assumptions 1, 2 and 3, and for

�

t

as de�ned above,

�

t�1

(s) = inf

v:jjvjj=1

sup

N

X

j=1

d

j

�

t

(s+ z

j

)

where the supremum is taken over all positive integers N , all z

1

; : : : ; z

N

2

B and all nonnegative d

1

; : : : ; d

N

satisfying

P

j

d

j

= 1 and

X

j

d

j

v � z

j

= �:

p.13

14 R. E. Schapire

Proof. To simplify notation, let us �x t and s. Let F and H be as

de�ned in the proof of Lemma 1. For jjvjj = 1, let

G(v) = sup

N

X

j=1

d

j

F (z

j

) (19)

where again the supremum is taken over d

j

's and z

j

's as in the state-

ment of the lemma. Note that by Assumption 3, this supremum cannot

be vacuous. Throughout this proof, we use v to denote a vector of norm

one, while w is a vector of unrestricted norm. Our goal is to show that

inf

v

G(v) = inf

w

H(w): (20)

Let us �x v momentarily. Let

S = f(v � z� �; F (z)) : z 2 Bg :

Then S is bounded by Assumptions 1, 2 and 3 (and part 2 of Lemma 1),

so we can apply Lemma 4 which gives

inf

�2IR

sup

z2B

(F (z) + �(v � z� �)) = G(v): (21)

Note that

inf

��0

H(�v) = inf

��0

sup

z2B

(F (z) + �v � z� ��)

� inf

�2IR

sup

z2B

(F (z) + �v � z� ��)

� inf

�2IR

sup

z2B

(F (z) + �v � z� j�j�) = inf

�2IR

H(�v)

(where the second inequality uses � � j�j). Combining with Eq. (21)

gives

inf

v

inf

��0

H(�v) � inf

v

G(v) � inf

v

inf

�2IR

H(�v):

Since the left and right terms are both equal to inf

w

H(w), this implies

Eq. (20) and completes the proof.

Proof of Theorem 3. We will show that, for m su�ciently large, on

round t, the adversary can choose the z

t

i

's so that

1

m

X

i

�

t

(s

t+1

i

) �

1

m

X

i

�

t�1

(s

t

i

)�

�

T

: (22)

p.14

Drifting Games 15

Repeatedly applying Eq. (22) implies that

1

m

X

i

L(s

T+1

i

) =

1

m

X

i

�

T

(s

T+1

i

) �

1

m

X

i

�

0

(s

1

i

)� � = �

0

(0)� �

proving the theorem.

Fix t. We use a random construction to show that there exist z

t

i

's

with the desired properties. For each weight vector w

t

i

chosen by the

shepherd, let d

i1

; : : : ; d

iN

2 [0; 1] and z

i1

; : : : ; z

iN

2 B be such that

P

j

d

ij

= 1,

X

j

d

ij

w

t

i

� z

ij

= �jjw

t

i

jj

and

X

j

d

ij

�

t

(s

t

i

+ z

ij

) � �

t�1

(s

t

i

)�

�

2T

:

Such d

ij

's and z

ij

's must exist by Lemma 5. Using Assumption 3, let

z

i0

be such that

w

t

i

� z

i0

� (� + �)jjw

t

i

jj:

Finally, let Z

i

be a random variable that is z

i0

with probability � and

z

ij

with probability (1� �)d

ij

(independent of the other Z

i

's). Here,

� =

�

4T (L

max

� L

min

)

:

Let v

i

= w

t

i

=jjw

t

i

jj, and let a

i

= jjw

t

i

jj=

P

i

jjw

t

i

jj. By Assumption 1,

jv

i

� Z

i

j � 1. Also,

E [v

i

� Z

i

] � (1� �)� + �(� + �) = � + ��:

Thus, by Hoe�ding's inequality (1963),

Pr

"

X

i

a

i

v

i

� Z

i

< �

#

� exp

�

�

2

�

2

2

P

i

a

2

i

!

� e

��

2

�

2

=2

: (23)

Let S = (1=m)

P

i

�

t

(s

t

i

+ Z

i

). Then

E [S] �

1

m

X

i

��

�

t�1

(s

t

i

)�

�

2T

�

(1� �) + ��

t

(s

t

i

+ z

i0

)

�

=

1

m

X

i

h

�

t�1

(s

t

i

) + �(�

t

(s

t

i

+ z

i0

)� �

t�1

(s

t

i

))

i

�

�

2T

(1� �)

�

1

m

X

i

�

t�1

(s

t

i

)� �(L

max

� L

min

)�

�

2T

: (24)

p.15

16 R. E. Schapire

By Hoe�ding's inequality (1963), since L

min

� �

t

(s

t

i

+Z

i

) � L

max

,

Pr [S < E [S]� �(L

max

� L

min

)] � e

�2�

2

m

: (25)

Now let m be so large that

e

�2�

2

m

+ e

��

2

�

2

=2

< 1:

Then by Eqs. (23) and (25), there exists a choice of z

t

i

's such that

X

i

w

t

i

� z

t

i

=

X

i

a

i

v

i

� z

t

i

� �

and such that

1

m

X

i

�

t

(s

t+1

i

) =

1

m

X

i

�

t

(s

t

i

+ z

t

i

)

� E [S]� �(L

max

� L

min

)

�

1

m

X

i

�

t�1

(s

t

i

)�

�

T

by Eq. (24) and our choice of �.

6. Computational methods

In this section, we discuss general computational methods for imple-

menting the OS algorithm.

6.1. Unate loss functions

We �rst note that, for loss functions L with certain monotonicity prop-

erties, the quadrant in which the minimizing weight vectors are to be

found can be determined a priori. This often simpli�es the search for

minima. To be more precise, for � 2 f�1;+1g

n

and x;y 2 IR

n

, let us

write x �

�

y if �

i

x

i

� �

i

y

i

for all 1 � i � n. We say that a function

f : IR

n

! IR is unate with sign vector � 2 f�1;+1g

n

if f(x) � f(y)

whenever x �

�

y.

LEMMA 6. If the loss function L is unate with sign vector � 2 f�1;+1g

n

,

then so is �

t

(as de�ned above) for t = 0; : : : ; T .

Proof. By backwards induction on t. The base case is immediate.

Let x �

�

y. Then for any z 2 B and w 2 IR

n

, x+ z �

�

y + z, and so

�

t

(x+ z) +w � z� �jjwjj � �

t

(y + z) +w � z� �jjwjj

p.16

Drifting Games 17

by inductive hypothesis. Therefore, �

t�1

(x) � �

t�1

(y), and so �

t�1

is

also unate.

For the main theorem of this subsection, we need one more assump-

tion:

ASSUMPTION 4. If z 2 B and if z

0

is such that jz

0

i

j = jz

i

j for all i,

then z

0

2 B.

THEOREM 7. Under the condition of Assumptions 1, 2, 3 and 4, if

L is unate with sign vector � 2 f�1;+1g

n

, then for any s 2 IR

n

, there

is a vector w which minimizes

sup

z2B

(�

t

(s+ z) +w � z� �jjwjj)

and for which w �

�

0.

Proof. Let F and H be as in the proof of Lemma 1. By Lemma 6,

F is unate. Let w 2 IR

n

have some coordinate i for which �

i

w

i

> 0 so

that w 6�

�

0. Let w

0

be such that

w

0

j

=

�

w

j

if j 6= i

�w

i

if j = i.

We show that H(w

0

) � H(w). Let z 2 B. If �

i

z

i

> 0 then

F (z) +w � z� �jjwjj � F (z) +w

0

� z� �jjw

0

jj:

If �

i

z

i

� 0 then let z

0

be de�ned analogously to w

0

. By Assumption 4,

z

0

2 B. Then z �

�

z

0

and so F (z) � F (z

0

). Thus,

F (z

0

) +w � z

0

� �jjwjj � F (z) +w

0

� z� �jjw

0

jj:

Hence, H(w

0

) � H(w).

Applying this argument repeatedly, we can derive a vector w with

w �

�

0 and such that H(w) � H(w). This proves the theorem.

Note that the loss functions for all of the games in Section 3 are

unate (and also satisfy Assumptions 1{4). The same will be true of

all of the games discussed in Section 7. Thus, for all of these games,

we can determine a priori the signs of each of the coordinates of the

minimizing vectors used by the OS algorithm.

p.17

18 R. E. Schapire

6.2. A general technique using linear programming

In many cases, we can use linear programming to implement OS. In

particular, let us assume that we measure weight vectors w using the

l

1

norm (i.e., p = 1). Also, let us assume that jBj is �nite. Then given

�

t

and s, computing

�

t�1

(s) = min

w2IR

n

max

z2B

(�

t

(s+ z) +w � z� �jjwjj)

can be rewritten as an optimization problem:

variables: w 2 IR

n

, b 2 IR

minimize: b

subject to: 8z 2 B : �

t

(s+ z) +w � z� �jjwjj � b.

The minimizing value b is the desired value of �

t�1

(s). Note that, with

respect to the variables w and b, this problem is \almost" a linear

program, if not for the norm operator. However, when L is unate with

sign vector �, and when the other conditions of Theorem 7 hold, we

can restrict w so that w �

�

0. This allows us to write

jjwjj

1

= �

n

X

i=1

�

i

w

i

:

Adding w �

�

0 as a constraint (or rather, a set of n constraints), we

now have derived a linear program with n + 1 variables and jBj + n

constraints. This can be solved in polynomial time.

Thus, for instance, this technique can be applied to the multiclass

boosting problem discussed in Section 3. In this case, B = f�1;+1g

n

.

So, for any s, �

t�1

(s) can be computed from �

t

in time polynomial

in 2

n

which may be reasonable for small n. In addition, �

t

must be

computed at each reachable position s in an n-dimensional integer grid

of radius t, i.e., for all s 2 f�t;�t + 1; : : : ; t � 1; tg

n

. This involves

computation of �

t

at (2t + 1)

n

points, giving an overall running time

for the algorithm which is polynomial in (2T + 1)

n

. Again, this may

be reasonable for very small n. It is an open problem to �nd a way to

implement the algorithm more e�ciently.

7. Deriving old and new algorithms

In this section, we show how a number of old and new boosting and

on-line learning algorithms can be derived and analyzed as instances of

the OS algorithm for appropriately chosen drifting games.

p.18

Drifting Games 19

7.1. Boost-by-majority and variants

We begin with the drifting game described in Section 3 corresponding

to binary boosting with B = f�1;+1g. For this game,

�

t�1

(s) = min

w�0

maxf�

t

(s� 1)� w � �w; �

t

(s+ 1) +w � �wg

where we know from Theorem 7 that only nonnegative values of w need

to be considered. It can be argued that the minimum must occur when

�

t

(s� 1)� w � �w = �

t

(s+ 1) + w � �w;

i.e., when

w =

�

t

(s� 1)� �

t

(s+ 1)

2

: (26)

This gives

�

t�1

(s) =

1 + �

2

�

t

(s+ 1) +

1� �

2

�

t

(s� 1):

Solving gives

�

t

(s) = 2

t�T

X

0�k�(T�t�s)=2

T � t

k

!

�

1 + �

1� �

�

k

(where we follow the convention that

�

n

k

�

= 0 if k < 0 or k > n).

Weighting examples using Eq. (26) gives exactly Freund's (1995) boost-

by-majority algorithm (the \boosting by resampling" version).

When B = f�1; 0;+1g, a similar but more involved analysis gives

�

t�1

(s) =max

�

(1� �)�

t

(s) + ��

t

(s+ 1);

1 + �

2

�

t

(s+ 1) +

1� �

2

�

t

(s� 1)

�

(27)

and the corresponding choice of w is �

t

(s) � �

t

(s+ 1) or (�

t

(s� 1) �

�

t

(s+1))=2, depending on whether the maximum in Eq. (27) is realized

by the �rst or second quantity. We do not know how to solve the

recurrence in Eq. (27) so that the bound �

0

(0) given in Theorem 2 can

be put in explicit form. Nevertheless, this bound can easily be evaluated

numerically, and the algorithm can certainly be implemented e�ciently

in its present form.

We have thus far been unable to solve the recurrence for the case

that B = [�1;+1], even to a point at which the algorithm can be

implemented. However, this case can be approximated by the case in

which B = fi=N : i = �N; : : : ; Ng for a moderate value of N . In

the latter case, the potential function and associated weights can be

p.19

20 R. E. Schapire

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

lo
ss

T

AdaBoost
B = [-1,+1]

B = {-1,0,+1}
B = {-1,+1}

Figure 4. A comparison of the bound �

0

(0) for the drifting games associated

with AdaBoost (Section 7.2) and boost-by-majority (Sections 3 and 7.1). For Ad-

aBoost, � is set as in Eq. (28). For boost-by-majority, the bound is plotted when

B is f�1;+1g, f�1; 0;+1g and [�1;+1]. (The latter case is approximated by

B = fi=100 : i = �100; : : : ; 100g.) The bound is plotted as a function of the number

of rounds T . The drift parameter is �xed to � = 0:2. (The jagged nature of the

B = f�1;+1g curve is due to the fact that games with an even number of rounds

| in which ties count as a loss for the shepherd so that L(0) = 1 | are harder than

games with an odd number of rounds.)

computed numerically. For instance, linear programming can be used

as discussed in Section 6.2. Alternatively, it can be shown that Lemma 5

combined with Theorem 7 implies that

�

t�1

(s)=maxfp�

t

(s+ z

1

) + (1� p)�

t

(s+ z

2

) :

z

1

; z

2

2 B; p 2 [0; 1]; pz

1

+ (1� p)z

2

= �g

which can be evaluated using a simple search over all pairs z

1

; z

2

(since

B is �nite).

Fig. 4 compares the bound �

0

(0) for the drifting games associ-

ated with boost-by-majority and variants in which B is f�1;+1g,

f�1; 0;+1g and [�1;+1] (using the approximation that was just men-

tioned), as well as AdaBoost (discussed in the next section). These

bounds are plotted as a function of the number of rounds T .

p.20

Drifting Games 21

7.2. AdaBoost and variants

As mentioned in Section 3, a simpli�ed, non-adaptive version of Ad-

aBoost can be derived as an instance of OS. To do this, we simply

replace the loss function (Eq. (7)) in the binary boosting game of

Section 3 with an exponential loss function L(s) = e

��s

where � > 0 is

a parameter of the game. As a special case of the discussion below, it

will follow that

�

t

(s) = �

T�t

e

��s

where � is the constant

� =

1� �

2

e

�

+

1 + �

2

e

��

:

Also, the weight given to a chip at position s on round t is

�

T�t

e

�

� e

��

2

!

e

��s

which is proportional to e

��s

(in other words, the weighting function

is e�ectively unchanged from round to round). This weighting is the

same as the one used by a non-adaptive version of AdaBoost in which

all weak hypotheses are given equal weight. Since e

��s

is an upper

bound on the loss function of Eq. (7), Theorem 2 implies an upper

bound on the fraction of mistakes of the �nal hypothesis of

�

0

(0) = �

T

:

When

� =

1

2

ln

�

1 + �

1� �

�

(28)

so that � is minimized, this gives an upper bound of

(1� �

2

)

T=2

= (1� 4

2

)

T=2

which is equivalent to a non-adaptive version of Freund and Schapire's (1997)

analysis.

We next consider a more general drifting game in n dimensions

whose loss function is a sum of exponentials

L(s) =

k

X

j=1

b

j

exp(��

j

u

j

� s) (29)

where the b

j

's, �

j

's and u

j

's are parameters with b

j

> 0, �

j

> 0,

jju

j

jj

1

= 1 and u

j

�

�

0 for some sign vector �. For this game, B =

p.21

22 R. E. Schapire

[�1;+1]

n

and p = 1. Many (non-adaptive) variants of AdaBoost corre-

spond to special cases of this game. For instance, AdaBoost.M2 (Freund

and Schapire, 1997), a multiclass version of AdaBoost, essentially uses

the loss function

L(s) =

n

X

j=2

e

�(�=2)(s

1

�s

j

)

where we follow the multiclass setup of Section 3 so that n is the

number of classes, and the �rst component in the drifting game is

identi�ed with the correct class. (As before, we only consider a non-

adaptive game in which � > 0 is a �xed, tunable parameter.) Likewise,

AdaBoost.MH (Schapire and Singer, 1999), another multiclass version

of AdaBoost, uses the loss function

L(s) = e

��s

1

+

n

X

j=2

e

�s

j

:

Note that both loss functions upper bound the \true" loss for multiclass

boosting given in Eq. (11). Moreover, both functions clearly have the

form given in Eq. (29).

We claim that, for the general game with loss function as in Eq. (29),

�

t

(s) =

X

j

b

j

�

T�t

j

exp(��

j

u

j

� s) (30)

where

�

j

=

1� �

2

e

�

j

+

1 + �

2

e

��

j

:

Proof of Eq. (30) is by backwards induction on t. For �xed t and s, let

w =

X

j

b

j

�

T�t

j

e

�

j

� e

��

j

2

!

u

j

exp(��

j

u

j

� s):

We will show that this is the minimizing weight vector that gets used

by OS for a chip at position s at time t. Let

b

0

j

= b

j

�

T�t

j

exp(��

j

u

j

� s):

Note that

�

t

(s+ z) +w � z =

X

j

b

0

j

exp(��

j

u

j

� z) +

e

�

j

� e

��

j

2

!

u

j

� z

!

�

X

j

b

0

j

e

�

j

+ e

��

j

2

!

(31)

p.22

Drifting Games 23

since

e

��x

�

e

�

+ e

��

2

!

�

e

�

� e

��

2

!

x

for all � 2 IR and x 2 [�1;+1] by convexity of e

��x

. Also, by our

assumptions on b

j

, u

j

and �

j

, we can compute

jjwjj

1

=

X

j

b

0

j

e

�

j

� e

��

j

2

!

: (32)

Thus, combining Eqs. (31) and (32) gives

�

t�1

(s) � sup

z2B

(�

t

(s+ z) +w � z� �jjwjj

1

)

�

X

j

b

0

j

�

j

=

X

j

b

j

�

T�t+1

j

exp(��

j

u

j

� s):

This gives the needed upper bound on �

t�1

(s).

For the lower bound, using Theorem 7 (since L is unate with sign

vector ��), we have

�

t�1

(s)

� min

w�

�

0

max

z2f��;�g

(�

t

(s+ z) +w � z� �jjwjj

1

)

= min

c�0

max

8

<

:

X

j

b

0

j

e

��

j

+ c� �c;

X

j

b

0

j

e

�

j

� c� �c

9

=

;

where we have used u

j

� � = 1 and w � � = jjwjj

1

(since u

j

�

�

0 and

w �

�

0). We also have identi�ed c with jjwjj

1

. Solving the min max

expression gives the desired lower bound. This completes the proof of

Eq. (30).

7.3. On-line learning algorithms

In this section, we show how Cesa-Bianchi et al.'s (1996) BW algorithm

for combining expert advice can be derived as an instance of OS. We will

also see how their algorithm can be generalized, and how Littlestone

and Warmuth's (1994) weighted majority algorithm can also be derived

and analyzed.

Suppose that we have access to m \experts." On each round t, each

expert i provides a prediction �

t

i

2 f�1;+1g. A \master" algorithm

combines their predictions into its own prediction

t

2 f�1;+1g. An

p.23

24 R. E. Schapire

outcome y

t

2 f�1;+1g is then observed. The master makes a mistake

if

t

6= y

t

, and similarly for expert i if �

t

i

6= y

t

. The goal of the master

is to minimize how many mistakes it makes relative to the best expert.

We will consider master algorithms which use a weighted majority

vote to form their predictions; that is,

t

= sign

m

X

i=1

w

t

i

�

t

i

!

:

The problem is to derive a good choice of weights w

t

i

. We also assume

that the master algorithm is conservative in the sense that rounds

on which the master's predictions are correct are e�ectively ignored

(so that the weights w

t

i

only depend upon previous rounds on which

mistakes were made).

Let us suppose that there is one expert that makes at most k mis-

takes. We will (re)derive an algorithm (namely, BW) and a bound on

the number of mistakes made by the master, given this assumption.

Since we restrict our attention to conservative algorithms, we can as-

sume without loss of generality that a mistake occurs on every round

and simply proceed to bound the total number of rounds.

To set up the problem as a drifting game, we identify one chip with

each of the experts. The problem is one dimensional so n = 1. The

weights w

t

i

selected by the master are the same as those chosen by the

shepherd. Since we assume that the master makes a mistake on each

round, we have for all t that

y

t

X

i

w

t

i

�

t

i

� 0: (33)

Thus, if we de�ne the drift z

t

i

to be �y

t

�

t

i

, then

X

i

w

t

i

z

t

i

� 0:

Setting � = 0, we see that Eq. (33) is equivalent to Eq. (1). Also,

B = f�1;+1g.

Let M

t

i

be the number of mistakes made by expert i on rounds

1; : : : ; t� 1. Then by de�nition of z

t

i

,

s

t

i

= 2M

t

i

� t+ 1:

Let the loss function L be

L(s) =

�

1 if s � 2k � T

0 otherwise.

(34)

p.24

Drifting Games 25

Then L(s

T+1

i

) = 1 if and only if expert i makes a total of k or fewer

mistakes in T rounds. Thus, our assumption that the best expert makes

at most k mistakes implies that

1 �

X

i

L(s

T+1

i

): (35)

On the other hand, Theorem 2 implies that

1

m

X

i

L(s

T+1

i

) � �

0

(0): (36)

By an analysis similar to the one given in Section 7.1, it can be seen

that

�

t�1

(s) =

1

2

(�

t

(s+ 1) + �

t

(s� 1)) :

Solving this recurrence gives

�

t

(s) = 2

t�T

T � t

� k �

t+s

2

!

where

n

� k

!

=

k

X

i=0

n

k

!

:

In particular,

�

0

(0) = 2

�T

T

� k

!

: (37)

Combining Eqs. (35), (36) and (37) gives

1

m

� 2

�T

T

� k

!

: (38)

In other words, the number of mistakes T of the master algorithm must

satisfy Eq. (38) and so must be at most

max

(

q 2 IN : q � lgm+ lg

q

� k

!)

;

the same bound given by Cesa-Bianchi et al. (1996).

The weighting function obtained is also equivalent to theirs since,

by a similar argument to that used in Section 7.1, OS gives

w

t

i

=

1

2

(�

t

(s

t

i

� 1)� �

t

(s

t

i

+ 1))

= 2

t�T�1

T � t

k �

t+s�1

2

!

= 2

t�T�1

T � t

k �M

t

i

!

:

p.25

26 R. E. Schapire

Note that this argument can be generalized to the case in which the

expert's predictions are not restricted to f�1;+1g but instead may be

all of [�1;+1], or a subset of this interval, such as f�1; 0;+1g. The per-

formance of each expert then is measured on each round using absolute

loss

1

2

j�

t

i

�y

t

j rather than whether or not it made a mistake. In this case,

as in the analogous extension of boost-by-majority given in Section 3,

we only need to replace B by [�1;+1] or f�1; 0;+1g. The resulting

bound on the number of mistakes of the master is then the largest T

for which 1=m � �

0

(0) (note that �

0

(0) depends implicitly on T). The

resulting master algorithm simply uses the weights computed by OS

for the appropriate drifting game. It is an open problem to determine

if this generalized algorithm enjoys strong optimality properties similar

to those of BW (Cesa-Bianchi et al., 1996).

Littlestone and Warmuth's (1994) weighted majority algorithm can

also be derived as an instance of OS. To do this, we simply replace the

loss function L in the game above with

L(s) = exp(��(s� 2k + T))

for some parameter � > 0. This loss function upper bounds the one in

Eq. (34). We assume that experts are permitted to output predictions

in [�1;+1] so that B = [�1;+1]. From the results of Section 7.2 applied

to this drifting game,

�

t

(s) = �

T�t

exp(��(s� 2k + T))

where

� =

e

�

+ e

��

2

:

Therefore, because one expert su�ers loss at most k,

1

m

� �

0

(0) = �

T

e

�(2k�T)

:

Equivalently, the number of mistakes T is at most

2�k + lnm

ln

�

2

1+e

�2�

�

;

exactly the bound given by Littlestone and Warmuth (1994). The al-

gorithm is also the same as theirs since the weight given to an expert

(chip) at position s

t

i

at time t is

w

t

i

=

e

�

� e

��

2

!

exp(��(s

t

i

� 2k + T)) / exp(�2�M

t

i

):

p.26

Drifting Games 27

8. Open problems

This paper represents the �rst work on general drifting games. As such,

there are many open problems.

We have presented closed-form solutions of the potential function

for just a few special cases. Are there other cases in which such closed-

form solutions are possible? In particular, can the boosting games of

Section 3 corresponding to B = f�1; 0;+1g and B = [�1;+1] be put

into closed-form?

For games in which a closed form is not possible, is there nevertheless

a general method of characterizing the loss bound �

0

(0), say, as the

number of rounds T gets large?

Side products of our work include new versions of boost-by-majority

for the multiclass case, as well as binary cases in which the weak hy-

potheses have range f�1; 0;+1g or [�1;+1]. However, the optimality

proof for the drifting game only carries over to the boosting setting if

the �nal hypothesis has the restricted forms given in Eqs. (4) and (10).

Are the resulting boosting algorithms also optimal (for instance, in the

sense proved by Freund (1995) for boost-by-majority) without these

restrictions?

Likewise, can the extensions of the BW algorithm in Section 7.3 be

shown to be optimal? Can this algorithm be extended using drifting

games to the multiclass case, or to the case in which the master is

allowed to output predictions in [�1;+1] (su�ering absolute loss)?

The OS algorithm is non-adaptive in the sense that � must be known

ahead of time. To what extent can OS be made adaptive? For instance,

can Freund's (1999) recent technique for making boost-by-majority

adaptive be carried over to the general drifting-game setting? Similarly,

what happens if the number of rounds T is not known in advance?

Finally, are there other interesting drifting games for entirely di�er-

ent learning problems such as regression or density estimation?

Acknowledgments

Many thanks to Yoav Freund for very helpful discussions which led to

this research.

References

Blackwell, D.: 1956, `An analog of the minimax theorem for vector payo�s'. Paci�c

Journal of Mathematics 6(1), 1{8.

Cesa-Bianchi, N., Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and

M. K. Warmuth: 1997, `How to Use Expert Advice'. Journal of the Association

for Computing Machinery 44(3), 427{485.

p.27

28 R. E. Schapire

Cesa-Bianchi, N., Y. Freund, D. P. Helmbold, and M. K. Warmuth: 1996, `On-line

Prediction and Conversion Strategies'. Machine Learning 25, 71{110.

Freund, Y.: 1995, `Boosting a weak learning algorithm by majority'. Information

and Computation 121(2), 256{285.

Freund, Y.: 1999, `An adaptive version of the boost by majority algorithm'. In: Pro-

ceedings of the Twelfth Annual Conference on Computational Learning Theory.

pp. 102{113, ACM Press.

Freund, Y. and R. E. Schapire: 1997, `A decision-theoretic generalization of on-

line learning and an application to boosting'. Journal of Computer and System

Sciences 55(1), 119{139.

Hoe�ding, W.: 1963, `Probability inequalities for sums of bounded random variables'.

Journal of the American Statistical Association 58(301), 13{30.

Littlestone, N. and M. K. Warmuth: 1994, `The Weighted Majority Algorithm'.

Information and Computation 108, 212{261.

Rockafellar, R. T.: 1970, Convex Analysis. Princeton University Press.

Schapire, R. E. and Y. Singer: 1999, `Improved boosting algorithms using con�dence-

rated predictions'. Machine Learning 37(3), 297{336.

p.28

