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Abstract. One of the surprising recurring phenomena observed in experiments with boosting is that
the test error of the generated classifier usually does not increase as its size becomes very large, and
often is observed to decrease even after the training error reaches zero. In this paper, we show that
this phenomenon is related to the distribution of margins of the training examples with respect to the
generated voting classification rule, where the margin of an example is ssmply the difference between
the number of correct votes and the maximum number of votesreceived by any incorrect label. We show
that techniques used in the analysis of Vapnik’s support vector classifiers and of neural networks with
small weights can be applied to voting methods to relate the margin distribution to the test error. We
also show theoretically and experimentally that boosting is especially effective at increasing the margins
of the training examples. Finaly, we compare our explanation to those based on the bias-variance
decomposition.

1 Introduction

This paper is about methods for improving the performance of alearning algorithm, sometimes also
called a prediction agorithm or classification method. Such an algorithm operates on a given set
of instances (or cases) to produce a classifier, sometimes aso caled a classification rule or, in the
machine-learning literature, a hypothesis. The goal of alearning agorithm isto find a classifier with
low generalization or prediction error, i.e., alow misclassification rate on a separate test set.

In recent years, there has been growing interest in learning algorithmswhich achieve high accuracy
by voting the predictionsof severa classifiers. For example, several researchers havereported significant
improvementsin performance using voting methods with decision-treelearning al gorithmssuch as C4.5
or CART aswell aswith neura networks|[3, 6, 8, 12, 13, 16, 18, 29, 31, 37].

We refer to each of the classifiers that is combined in the vote as a base classifier and to the final
voted classifier as the combined classifier.

As examples of the effectiveness of these methods, consider the results of the following two
experimentsusingthe“letter” dataset. (All datasetsaredescribedin Appendix B.) Inthefirst experiment,



we used Breiman’'s bagging method [6] on top of C4.5 [32], a decision-tree learning algorithm similar
to CART [9]. That is, we reran C4.5 many times on random “bootstrap” subsamples and combined the
computed trees using simplevoting. Inthetop left of Figure 1, we have shown thetraining and test error
curves (lower and upper curves, respectively) of the combined classifier as a function of the number of
trees combined. Thetest error of C4.5 on thisdataset (run just once) is 13.8%. Thetest error of bagging
1000 trees is 6.6%, a significant improvement. (Both of these error rates are indicated in the figure as
horizonta grid lines.)

In the second experiment, we used Freund and Schapire’'s AdaBoost algorithm [20] on the same
dataset, also using C4.5. This method is similar to bagging in that it reruns the base |earning algorithm
C4.5 many timesand combines the computed trees using voting. However, the subsamplesthat are used
for training each tree are chosen in a manner which concentrates on the “hardest” examples. (Details
are given in Section 3.) The results of this experiment are shown in the top right of Figure 1. Note that
boosting drives the test error down even further to just 3.1%. Similar improvementsin test error have
been demonstrated on many other benchmark problems (see Figure 2).

These error curves reveal aremarkable phenomenon, first observed by Drucker and Cortes[16], and
later by Quinlan [31] and Breiman [8]. Ordinarily, as classifiers become more and more complex, we
expect their generalization error eventually to degrade. Yet these curves reveal that test error does not
increase for either method even after 1000 trees have been combined (by which point, the combined
classifier involves more than two million decision-tree nodes). How can it be that such complex
classifiers have such low error rates? This seems especialy surprising for boosting in which each new
decision treeistrained on an ever more specialized subsample of the training set.

Another apparent paradox is revedled in the error curve for AdaBoost. After just five trees have
been combined, the training error of the combined classifier has already dropped to zero, but the test
error continues to drop® from 8.4% on round 5 down to 3.1% on round 1000. Surely, a combination
of five trees is much simpler than a combination of 1000 trees, and both perform equally well on the
training set (perfectly, in fact). So how can it be that the larger and more complex combined classifier
performs so much better on the test set?

Theresults of these experiments seem to contradict Occam’srazor, one of thefundamental principles
in the theory of machine learning. This principle states that in order to achieve good test error, the
classifier should be as smple as possible. By “simple,” we mean that the classifier is chosen from
a restricted space of classifiers. When the space is finite, we use its cardindlity as the measure of
complexity and when it is infinite we use the VC dimension [42] which is often closely related to the
number of parameters that define the classifier. Typically, both in theory and in practice, the difference
between the training error and the test error increases when the complexity of the classifier increases.

Indeed, such an analysis of boosting (which could aso be applied to bagging) was carried out by
Freund and Schapire [20] using the methods of Baum and Haussler [4]. This analysis predicts that
the test error eventually will increase as the number of base classifiers combined increases. Such a
prediction is clearly incorrect in the case of the experiments described above, as was pointed out by
Quinlan [31] and Breiman [8]. The apparent contradictionisespecially stark in the boosting experiment
in which the test error continuesto decrease even after the training error has reached zero.

Breiman [8] and others have proposed definitions of bias and variance for classification, and have
argued that voting methods work primarily by reducing the variance of a learning algorithm. This
explanation is useful for bagging in that bagging tends to be most effective when the variance is large.

1Even when the trai ning error of the combined classifier reaches zero, AdaBoost continues to obtain new base classifiers
by training the base learning algorithm on different subsamples of the data. Thus, the combined classifier continuesto evolve,
even after itstraining error reacheszero. See Section 3 for more detail.
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Figure 1: Error curvesand margin distribution graphsfor bagging and boosting C4.5 ontheletter dataset. Learning
curves are shown directly above corresponding margin distribution graphs. Each learning-curve figure shows the
training and test error curves (lower and upper curves, respectively) of the combined classifier as a function of the
number of classifiers combined. Horizontal linesindicatethetest error rate of the base classifier aswell asthetest
error of thefinal combined classifier. The margin distribution graphs show the cumulative distribution of margins
of thetraining instances after 5, 100 and 1000 iterations, indicated by short-dashed, |ong-dashed (mostly hidden)
and solid curves, respectively.

However, for boosting, this explanation is, at best, incomplete. As will be seen in Section 5, large
variance of the base classifiersisnot a requirement for boosting to be effective. In some cases, boosting
even increases the variance while reducing the overall generalization error.

Intuitively, it might seem reasonabl e to think that because we are simply voting the base classifiers,
we are not actually increasing their complexity but merely “smoothing” their predictions. However, as
argued in Section 5.4, the complexity of such combined classifiers can be much greater than that of the
base classifiers and can result in over-fitting.

In this paper, we present an aternative theoretica analysis of voting methods, applicable, for
instance, to bagging, boosting, “arcing” [8] and ECOC [13]. Our approach is based on a similar result
presented by Bartlett [2] in adifferent context. We prove rigorous, non-asymptotic upper boundson the
generdization error of voting methodsin terms of a measure of performance of the combined classifier
onthetraining set. Our bounds also depend on the number of training examples and the“ complexity” of
the base classifiers, but do not depend explicitly on the number of base classifiers. Although too loose
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Figure 2: Comparison of C4.5 versus bagging C4.5 and boosting C4.5 on a set of 27 benchmark problems as
reported by Freund and Schapire[18]. Each pointin each scatter plot showsthetest error rate of thetwo competing
algorithms on a single benchmark. The y-coordinate of each point givesthetest error rate (in percent) of C4.5 on
the given benchmark, and the x-coordinate gives the error rate of bagging (left plot) or boosting (right plot). All
error rates have been averaged over multipleruns.

to give practical quantitative predictions, our bounds do give a qualitative explanation of the shape of
the observed learning curves, and our analysis may be helpful in understanding why these agorithms
fail or succeed, possibly leading to the design of even more effective voting methods.

Thekey ideaof thisanalysisisthefollowing. In order to analyze the generdization error, one should
consider more than just the training error, i.e., the number of incorrect classifications in the training
set. One should aso take into account the confidence of the classifications. Here, we use a measure
of the classification confidence for which it is possible to prove that an improvement in this measure
of confidence on the training set guarantees an improvement in the upper bound on the generalization
error.

Consider acombined classifier whose predictionistheresult of avote (or aweighted vote) over aset
of base classifiers. Suppose that the weights assigned to the different base classifiers are normalized so
that they sumto one. Fixing our attention on a particular example, we refer to the sum of the weights of
the base classifiers that predict a particular [abel asthe weight of that |abel. We define the classification
margin for the example as the difference between the weight assigned to the correct label and the
maximal weight assigned to any single incorrect label. It is easy to see that the margin is a number in
therange [—1, 1] and that an exampleisclassified correctly if and only if its margin is positive. A large
positive margin can be interpreted as a“ confident” correct classification.

Now consider the distribution of the margin over the whole set of training examples. To visualize
this distribution, we plot the fraction of exampleswhose marginisat most = asafunctionof = € [—1,1].
We refer to these graphs as margin distribution graphs. At the bottom of Figure 1, we show the margin
distribution graphs that correspond to the experiments described above.

Our main abservationisthat both boosting and bagging tend to increase the margins associated with



examples and converge to a margin distribution in which most examples have large margins. Boosting
isespecialy aggressiveinits effect on exampleswhoseinitial marginissmall. Even though thetraining
error remainsunchanged (at zero) after round 5, the margin distribution graph changes quite significantly
so that after 100 iterations all examples have amargin larger than 0.5. In comparison, on round 5, about
7.7% of the examples have margin below 0.5. Our experiments, detailed later in the paper, show that
there is a good correlation between areduction in the fraction of training examples with small margin
and improvementsin the test error.

The idea that maximizing the margin can improve the generalization error of a classifier was
previously suggested and studied by Vapnik [42] and led to his work with Cortes on support-vector
classifiers [10], and with Boser and Guyon [5] on optimal margin classifiers. In Section 6, we discuss
the relation between our work and Vapnik’sin greater detail.

Shawe-Taylor et a. [38] gave boundson the generalization error of support-vector classifiersinterms
of the margins, and Bartlett [2] used related techniquesto give a similar bound for neura networkswith
small weights. A consequence of Bartlett's result is a bound on the generalization error of a voting
classifier in terms of the fraction of training examples with small margin.

In Section 2, we use a similar but simpler approach to give a slightly better bound. Here we give
the main intuition behind the proof. This idea brings us back to Occam'’s razor, though in a rather
indirect way. Recal that an example is classified correctly if its margin is positive. If an example
is classified by alarge margin (either positive or negative), then small changes to the weights in the
majority vote are unlikely to change the label. If most of the examples have a large margin then
the classification error of the origina majority vote and the perturbed majority vote will be similar.
Suppose now that we had a small set of weighted majority rules that was fixed ahead of time, called
the “approximating set.” One way of perturbing the weights of the classifier mgjority voteisto find a
nearby rule within the approximating set. As the approximating set issmall, we can guarantee that the
error of the approximating rule on the training set is similar to its generalization error, and as its error
issimilar to that of the origina rule, the generalization error of the origina rule should also be small.
Thus, we are back to an Occam’s razor argument in which instead of arguing that the classification rule
itself issimple, we argue that the ruleis closeto asimplerule.

Boosting is particularly good at finding classifierswith large marginsin that it concentrates on those
examples whose margins are small (or negative) and forces the base learning algorithm to generate good
classifications for those examples. This process continues even after the training error has reached zero,
which explainsthe continuing drop in test error.

In Section 3, we show that the powerful effect of boosting on the margin is not merely an empirical
observation but is in fact the result of a provable property of the agorithm. Specifically, we are able
to prove upper bounds on the number of training examples below a particular margin in terms of the
training errors of the individua base classifiers. Under certain conditions, these bounds imply that
the number of training examples with small margin drops exponentially fast with the number of base
classifiers.

In Section 4, we give more examples of margin distribution graphs for other datasets, base learning
algorithms and combination methods.

In Section 5, we discussthe relation of our work to bias-variance decompositions. In Section 6, we
compare our work to Vapnik's optima margin classifiers, and in Section 7, we briefly discuss similar
results for learning convex combinations of functions for |oss measures other than classification error.



2 Generalization Error asa Function of Margin Distributions

In this section, we prove that achieving alarge margin on the training set resultsin an improved bound
on the generalization error. This bound does not depend on the number of classifiers that are combined
in the vote. The approach we take is similar to that of Shawe-Taylor et a. [38] and Bartlett [2], but
the proof here is simpler and more direct. A dlightly weaker version of Theorem 1 is a specia case of
Bartlett’s main result.

We give a proof for the specia case in which there are just two possible labels {—1,+1}. In
Appendix A, we examine the case of larger finite sets of labels.

Let # denote the space from which the base classifiers are chosen; for example, for C4.5 or CART,
it is the space of decision trees of an appropriate size. A base classifier h € # is a mapping from
an instance space X to {—1,4+1}. We assume that examples are generated independently at random
according to some fixed but unknown distribution D over X x {—1,+1}. Thetraining set is alist of
m pairs S = ((z1,y1), (¥2,Y2), - - -, (Tm, ym)) Chosen according to D. Weuse P, ,).p [A] to denote
the probability of the event A when the example (=, y) is chosen according to D, and P, )5 [4]
to denote probability with respect to choosing an example uniformly at random from the training set.
When clear from context, we abbreviate these by Pp [A] and Ps[A]. Weuse Ep [A] and Es [A] to
denote expected value in asimilar manner.

We define the convex hull C of H as the set of mappingsthat can be generated by taking a weighted
average of classifiersfrom 7{:

Ci{f:xHZahh(w) ap > 0; Zahzl}
h

heH

where it is understood that only finitely many a;’s may be nonzero.> The mgjority vote rule that is
associated with f givesthewrong prediction on theexample (z, y) only if y f(z) < 0. Also, themargin
of an example (z, y) inthiscaseissimply y f(z).

The following two theorems, the main results of this section, state that with high probability, the
generaization error of any majority vote classifier can be bounded in terms of the number of training
examples with margin below athreshold 4, plus an additional term which depends on the number of
training examples, some “complexity” measure of 7{, and the threshold é (preventing us from choosing
6 too close to zero).

The first theorem applies to the case that the base classifier space # isfinite, such as the set of al
decision trees of agiven sizeover aset of discrete-valued features. In thiscase, our bound depends only
on log|#|, which isroughly the description length of a classifier in . This meansthat we can tolerate
very large classifier classes.

If # isinfinite—such as the class of decision trees over continuous features—the second theorem
gives a bound in terms of the Vapnik-Chervonenkis dimension® of 7.

Note that the theorems apply to every majority vote classifier, regardless of how it is computed.
Thus, the theorem applies to any voting method, including boosting, bagging, etc.

2A finite support is not a requirement for our proof but is sufficient for the application herewhich is to majority votes over
afinite number of base classifiers.

3Recall that the VC-dimension is defined as follows: Let F be a family of functions f : X — Y where |Y| = 2.
Then the VC-dimension of F is defined to be the largest number d such that there exists z1,...,2z4 € X for which
H{f(x1),..., f(za)) : f € F} = 2% Thus, the VC-dimension is the cardinality of the largest subset .S of the space X for
which the set of restrictions to .S of functionsin F containsall functionsfrom Sto Y.



2.1 Finite base-classifier spaces

Theorem 1 Let D be a distributionover X x {—1,1}, and let S be a sample of m examples chosen
independently at random according to D. Assume that the base-classifier space 7 is finite, and let
6 > 0. Then with probability at least 1 — ¢ over the random choice of thetraining set .S, every weighted
average function f € C satisfies the following bound for all § > 0:

" 1/2
2o ) < 0] < s ) < 0] +0 L (0] ogiag) ).

Proof: For the sake of the proof we define C to be the set of unweighted averages over N elements

from #:
Cy=<f: »—>—1§h»()h»€7{
N = T i:lzw i .

We allow the same i € H to appear multiple times in the sum. This set will play the role of the
approximating set in the proof.

Any maority vote classifier f € C can be associated with a distribution over 7 as defined by the
coefficients a;,. By choosing N elements of H independently at random according to this distribution
we can generate an element of Cy. Using such a construction we map each f € C to adistribution Q
over Cx. That is, afunction ¢ € Cx distributed according to Q is selected by choosing h1, ..., hx
independently at random according to the coefficients a;, and then defining g(z) = (1/N) Y24 hi(z).

Our goal is to upper bound the generalization error of f € C. Forany ¢ € Cy and # > 0 we can
separate this probability into two terms:

Pp [yf(x) < 0] < Pp[yg(x) < 0/2] +Pp [yg(x) > 0/2,yf(x) < 0]. (1)

This holds because, in general, for two events A and B,

P[A]:P[BmA]JrP[EmA}gP[B]+P[§mA}. (2)

AsEquation (1) holdsfor any g € Cy, we can take the expected value of theright hand side with respect
to the distribution @ and get:

Ppyf(z) <0 < Ppyeolyg(e) <0/2) +Popyao lygle) > 0/2,yf(x) <O
E;vo [Pp [yg(x) < 0/2]] + Ep [Pyug [yg(z) > 0/2,yf(x) < O]
E;no [Pp [yg(z) < 0/2]] + Ep [Pyug [yg(z) > 0/2] yf(z) <O]]. (3)

We bound both terms in Equation (3) separately, starting with the second term. Consider a fixed
example (z, y) and take the probability inside the expectation with respect to the random choice of g.
Itisclear that f(z) = E,ug [g(2)] sothe probability inside the expectation is equal to the probability
that the average over N random draws from a distribution over {—1,+1} is larger than its expected
value by more than 6/2. The Chernoff bound yields

ll
~—
> D

< <
< <

IN

P,olyg(z) > 0/2| yf(x) < 0] < NE/B, (4)

To upper bound thefirst term in (3) we use the union bound. That is, the probability over the choice
of S that thereexistsany g € Cy and § > O for which

Pp[yg(z) <0/2] > Ps[yg(x) < 0/2] +en

7



isat most (N + 1)|Cy|e2m“~. The exponential term e~2"< comes from the Chernoff bound which
holdsfor any single choice of g and 6. Theterm (IV + 1)|Cx/| isan upper bound on the number of such
choiceswhere we have used the fact that, because of theform of functionsin C -, we need only consider
values of 6 of theform 2i/N fori = 0,..., N. Notethat |Cn| < |H|".

Thus, if weset ey = \/(1/2m) In((N + 1)|#|"V /én), and take expectation with respect to Q, we
get that, with probability at least 1 — é

Ppg~olyg(z) <0/2] <Psguo[yg(z) <0/2] +en (5

for every choice of #, and every distribution Q.
To finish theargument we relate the fraction of thetraining set on which yg(z) < §/2tothefraction
onwhichy f(z) < 8, which isthe quantity that we measure. Using Equation (2) again, we have that

Psgnolyg(e) <0/2] < Psyuglyf(z) < O] +Psguo[yg(z) < 0/2,yf(x) > 6]
= Ps[yf(z) <O +Es[Pyug[yg(z) <0/2,yf(x) > 0]]
< Pslyf(e) <O+ Es [Py lyg(z) <0/2|yf(z) >0]]. (6)

To bound the expression inside the expectation we use the Chernoff bound as we did for Equation (4)
and get
P,.o[yg(x) < 0/2|yf(z) > 6] < e NE/B @)

Letén = §/(IN(N + 1)) sothat the probability of failurefor any N will beat most -1 dn = 4.
Then combining Equations(3), (4), (5), (6) and (7), we get that, with probability at least 1 — &, for every
6 > 0andevery N > 1:

1, (N(N—|— 1)2|”H|N)

Py [yf(x) < 0] < P [yf(x) < 6] + 27 V08 4 ¢ > 5 (8)

m

Finally, the statement of the theorem follows by setting N = [(4/62) In(m/In|#[)]. 1

2.2 Discussion of the bound

Let us consider the quantitative predictions that can be made using Theorem 1. It is not hard to show
thatif § > Oand # > O are held fixed asm — oo the bound given in Equation (8) with the choice of vV
given in the theorem converges to

Py [y/(x) < 0] < Ps [yf(x) SO]—I—\/W—FO(\/%) | ©

Infact,if § < 1/2, § = 0.01 (1% probability of failure), |#| > 10° and » > 1000 then the second term
on the right-hand side of Equation (9) is a pretty good approximation of the second and third terms on
the right-hand side of Equation (8), asisdemonstrated in Figure 3.

From Equation (9) and from Figure 3 we see that the bounds given here start to be meaningful
only when the size of the training set is in the tens of thousands. As we shall see in Section 4, the
actual performance of AdaBoost is much better than predicted by our bounds; in other words, while our
bounds are not asymptotic (i.e., they hold for any size of the training set), they are still very loose. The
bounds we give in the next section for infinite base-classifier spaces are even looser. It is an important
and challenging open praoblem to prove tighter bounds.

8
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Figure 3: A few plots of the second and third terms in the bound given in Equation (8) (solid lines) and their
approximation by the second term in Equation (9) (dotted lines). The horizontal axis denotes the number of
training examples (with alogarithmic scale) and the vertical axis denotesthe value of the bound. All plotsare for
§ = 0.01and || = 10°. Each pair of close lines corresponds to a different value of ¢; counting the pairs from
the upper right to the lower left, the values of # are 1/20,1/8,1/4and 1/2.

From a practical standpoint, the fact that the boundswe give are so loose suggests that there might
exist criteria different from the one used in Theorem 1 which are better in predicting the performance
of voting classifiers. Breiman [7] and Grove and Schuurmans [23] experimented with maximizing the
minimal margin, that is, the smallest margin achieved on the training set. The advantage of using this
criterion is that maximizing the minimal margin can be done efficiently (if the set of base classifiers
is not too large) using linear programming. Unfortunately, their experiments indicate that altering
the combined classifier generated by AdaBoost so as to maximize the minima margin increases the
generaization error more often than not. In one experiment reported by Breiman, the generalization
error increases even though the margins of all of the instances are increased (for this dataset, called
“ionosphere,” the number of instancesis 351, much too small for our bounds to apply). While none of
these experiments contradict the theory, they highlight the incompl eteness of the theory and the need to
refine it.

2.3 Infinite base-classifier spaces

Theorem 2 Let D be a distributionover X x {—1,1}, and let S be a sample of m examples chosen



independently at random according to D. Suppose the base-classifier space H has VC-dimension d,
andlet § > 0. Assumethat m > d > 1. Then with probability at least 1 — 6 over the random choice of
thetraining set S, every weighted average function f € C satisfies the following bound for all § > 0:

NG 62

The proof of this theorem uses the following uniform convergence result, which is a refinement of
the Vapnik and Chervonenkis result due to Devroye [11]. Let A be aclass of subsets of a space 7, and
define

1/2
Pp [y/(x) < 0] < Ps [y/() < 8] + O ( 1 (d'ogz(m/d) + Iog(l/é)) ) -

s(A,m)=max{|[{ANS:AcA}:SCZI|S|=m}.

Lemma 3 (Devroye) For any class .A of subsets of 7, and for a sample .S of m examples chosen
independently at random according to a distribution D over 7, we have

Pspm |SUp |P.ws[z € A] = P.op[z € A]| > ¢| < 4688(./4, mz) @(p(—Zmez).
AcA

In other words, the lemma bounds the probability of a significant deviation between the empirica and
true probabilities of any of the eventsin the family A.
Proof: (of Theorem 2) The proof proceeds in the same way as that of Theorem 1, until we come to
upper bound thefirst term in (3). Rather than the union bound, we use Lemma 3.
Define
A={{(z,y) € X x{-1,1} : yg(z) > 8/2} : g € Cn, 0 > 0} .

Let z9,...,2,, € X and y1,...,y, € {—1,1}. Since the VC-dimension of X is d, Sauer's
lemma[33, 41] states that

d m em d
h(za),....,h(zn)) i h e H} < < —
[{Gh(er), b)) € )] ZO() (%)

for m > d > 1. Thisimpliesthat

em

N
H{(y1g(21)s - s Ymg(zm)) s g €CN}| < (7)

since each ¢ € Cn iscomposed of NV functions from #H. Since we need only consider N + 1 distinct
values of 4, it followsthat s(A, m) < (N 4 1)(em/d)*. We can now apply Lemma 3 to bound the
probability inside the expectation in the first term of (3). Setting

en = ¢% (len (6%2) +1n (468(+N+1>))

and taking expectation with respect to Q, we get that, with probability at least 1 — &, (5) holdsfor al
. Proceeding as in the proof of Theorem 1, we get that, with probability at least 1 — 4, for al § > 0
and N > 1,

Ppyf(z) <0l <Pglyf(z) <0+ 2~ NO/8 4 ¢2i (dNIn (6%32) + Inw)'

m )

Setting N = [(4/62) In(m/d)] completesthe proof. 1

10



2.4 Sketch of a more general approach

Instead of the proof above, we can use a more general approach which can aso be applied to any class
of real-valued functions. The use of an approximating class, such as C in the proofs of Theorems 1
and 2, is central to our approach. We refer to such an approximating class as a sloppy cover. More
formally, for a class 7 of rea-valued functions, a training set .S of size m, and positive real numbers
9 and ¢, we say that a function class F is an e-sloppy #-cover of F with respect to S if, for dl f in
F, thereexists f in  with P..g [|f(x) — f(z)] > 0} < e. Let N'(F, 8, ¢, m) denote the maximum,
over al training sets S of size m, of the size of the smallest ¢-sloppy 6-cover of F with respect to 5.
Standard techniquesyield the following theorem (the proof is essentially identical to that of Theorem 2
in Bartlett [2]).

Theorem 4 Let F be a class of real-valued functions defined on the instance space X. Let D be a
distribution over X x {—1,1}, and let .S be a sample of m examples chosen independently at random
accordingtoD. Let ¢ > Oandlet § > 0. Then the probability over the random choice of the training
set S that there exists any function f € F for which

Pp [yf(z) <0] > Ps[yf(z) < 0] +¢

isat most
2N (F,0/2,¢/8,2m) exp(—e®m/32).

Theorem 2 can now be proved by constructing a sloppy cover using the same probabilistic argument
asinthe proof of Theorems1and 2, i.e., by choosing an element of C  randomly by sampling functions
from #. In addition, this result leads to a slight improvement (by log factors) of the main result of
Bartlett [2], which gives bounds on generalization error for neural networks with real outputsin terms
of the size of the network weights and the margin distribution.

3 The Effect of Boosting on Margin Distributions

We now give theoretical evidence that Freund and Schapire's [20] AdaBoost agorithm is especialy
suited to the task of maximizing the number of training examples with large margin.

We briefly review their algorithm. We adopt the notation used in the previous section, and restrict
our attention to the binary case.

Boosting works by sequentially rerunning a base learning agorithm, each time using a different
distribution over training examples. That is,oneachround¢ = 1,..., T, adistribution 1, is computed
over thetraining examples, or, formally, over theset of indices {1, . . ., m}. Thegoal of the baselearning
agorithmthenistofind aclassifier o, withsmall error ¢; = P;p, [y; # hi(x;)]. Thedistribution used
by AdaBoost isinitialy uniform (D1(:) = 1/m), and then is updated multiplicatively on each round:

Disa(i) = Dy(x) @(p(;tyiatht(wi))'

Here, o; = % In((1 - ¢)/e) and Z, isanormalization factor chosen so that 1,41 sumsto one. In our
case, /; can be computed exactly:

Zy = iDt(i)@(p(_yiatht(wi))
i=1
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= > D)™+ > Dyi)e™

iyi=he(z;) TR (4)
= (1-¢)e 2t 4 ¢e™
= 2 675(1 — 675).

The final combined classifier is a weighted majority vote of the base classifiers, namely, sign( f)
where

T
Z Oétht($)
fla) = =——

T
S
t=1

Note that, on round ¢, AdaBoost places the most weight on examples (z, y) for which y S5 ayhy (2)
issmallest. This quantity isexactly the margin of the combined classifier computed up to this point.

Freund and Schapire [20] prove that if thetraining error rates of al the base classifiers are bounded
below 1/2 for al D, so that ¢; < 1/2 — ~ for some v > 0, then the training error of the combined
classifier decreases exponentially fast with the number of base classifiersthat are combined. Thetraining
error is equal to the fraction of training examples for which y f(z) < 0. It isasimple matter to extend
their proof to show that, under the same conditions on ¢, if 8 is not too large, then the fraction of
training examples for which y f(z) < 6 aso decreases to zero exponentially fast with the number of
base classifiers (or boosting iterations).

(10)

Theorem 5 Suppose the base |earning algorithm, when called by AdaBoost, generates classifierswith
weighted training errorses, . . ., er. Then for any ¢, we have that

Ployyms [yf(z) < 0] <27 H )10 (11)

Proof: Notethat if yf(z) < 0 then

T T
yz@tht(af) < 92047:

t=1 t=1
and so

T T

exp (—yz ach(z) + 020@) >1

t=1 t=1

Therefore,

T T
Ploes ) <0 < By o0 (s cuho) +93 00|
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Figure 4: Error curves and margin distribution graphs for three voting methods (bagging, boosting and ECOC)
using C4.5 as the base learning algorithm. Results are given for the letter, satimage and vehicle datasets. (See
caption under Figure 1 for an explanation of these curves.)
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Figure 5: Error curves and margin distribution graphs for three voting methods (bagging, boosting and ECOC)
using decision stumpsas the basel earning algorithm. Resultsare given for theletter, satimage and vehicle datasets.
(See caption under Figure 1 for an explanation of these curves.)
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where the last equality follows from the definition of Dy1. Noting that >°7>, D741(d) = 1, and
plugging in the values of «; and Z; givesthetheorem. |

To understand the significance of the result, assume for a moment that, for dl ¢, ¢, < 1/2 — ~ for
some v > 0. Since here we are considering only two-class prediction problems, a random prediction
will be correct exactly half of the time. Thus, the conditionthat ¢; < 1/2 — ~ for some small positive
~ means that the predictions of the base classifiers are dlightly better than random guessing. Given this
assumption, we can simplify the upper bound in Equation (11) to:

(V-2 27>1+9)T .

If & < ~, it can be shown that the expression inside the parentheses is smaller than 1 so that the
probability that y f(z) < 6 decreases exponentially fast with 7.4 In practice, ¢; increases as afunction
of ¢, possibly even converging to 1/2. However, if this increase is sufficiently slow the bound of
Theorem 5 is still useful. Characterizing the conditions under which the increase is dow is an open
problem.

Although this theorem applies only to binary classification problems, Freund and Schapire [20] and
others [35, 36] give extensive treatment to the multiclass case (see also Section 4). All of their results
can be extended to prove ana ogous theorems about margin distributionsfor this more general case.

4 MoreMargin Distribution Graphs

In this section, we describe experiments we conducted to produce a series of error curves and margin
distribution graphs for avariety of datasets and |earning methods.

Datasets. We used three benchmark datasets called “letter,” “ satimage” and “vehicle” Brief descrip-
tions of these are given in Appendix B. Note that al three of these learning problems are multiclass
with 26, 6 and 4 classes, respectively.

Voting methods.  In addition to bagging and boosting, we used avariant of Dietterich and Bakiri’s[13]
method of error-correcting output codes (ECOC), which can be viewed as a voting method. This
approach was designed to handle multiclassproblemsusing only atwo-classlearning algorithm. Briefly,
it works as follows: Asin bagging and boosting, a given base learning algorithm (which need only
be designed for two-class problems) is rerun repeatedly. However, unlike bagging and boosting, the
examples are not reweighted or resampled. Instead, on each round, the |abel s assigned to each example
are modified so as to create a new two-class labeling of the data which isinduced by a simple mapping
from the set of classesinto {—1,+1}. The base learning algorithm is then trained using this relabeled
data, generating abase classifier.

The sequence of bit assignments for each of the individual l1abels can be viewed as a “code word.”
A given test example is then classified by choosing the label whose associated code word is closest in
Hamming distanceto the sequence of predictionsgenerated by the base classifiers. Thiscoding-theoretic
interpretation led Dietterich and Bakiri to theideaof choosing code words with strong error-correcting
properties so that they will be as far apart from one another as possible. However, in our experiments,
rather than carefully constructing error-correcting codes, we simply used random output codes which
are highly likely to have similar properties.

*We can show that if ~ is known in advance then an exponential decreasein the probability can be achieved (by aslightly
different boosting algorithm) for any ¢ < 2. However, we don’t know how to achieve this improvement when no nontrivial
lower bound on 1/2 — ¢, isknown apriori.
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The ECOC combination rule can aso be viewed as a voting method: Each base classifier 4, on a
given instance z, predictsasingle bit i, (z) € {—1,4+1}. We can interpret this bit as a single vote for
each of the labels which were mapped on round ¢ to 2, (). The combined hypothesisthen predictswith
the label receiving the most votes overall. Since ECOC is a voting method, we can measure margins
just aswe do for boosting and bagging.

Asnoted above, we used three multiclasslearning problemsin our experiments, whereas the version
of boosting given in Section 3 only handles two-class data. Freund and Schapire [20] describe a
straightforward adaption of this algorithm to the multiclass case. The problem with this algorithm is
that it still requires that the accuracy of each base classifier exceed 1/2. For two-class problems, this
requirement is about as minimal as can be hoped for since random guessing will achieve accuracy 1/2.
However, for multiclass problems in which £ > 2 labels are possible, accuracy 1/2 may be much
harder to achieve than the random-guessing accuracy rate of 1/k. For fairly powerful base learners,
such as C4.5, this does not seem to be a problem. However, the accuracy 1/2 requirement can often
be difficult for less powerful base learning algorithmswhich may be unable to generate classifiers with
small training errors.

Freund and Schapire [20] provide one solution to this problem by modifying the form of the base
classifiersand refining the goal of the base learner. Inthisapproach, rather than predicting asingle class
for each example, the base classifier chooses a set of “ plausible’ labels for each example. For instance,
in a character recognition task, the base classifier might predict that a particular exampleiseither a“6,”
“8” or “9,” rather than choosing just a single label. Such a base classifier is then evaluated using a
“pseudoloss’ measure which, for a given example, penalizes the base classifier (1) for failingto include
the correct label in the predicted plausible label set, and (2) for each incorrect label which isincluded
in the plausible set. The combined classifier, for a given example, then chooses the single label which
occurs most frequently in the plausible label sets chosen by the base classifiers (possibly giving more
or lessweight to some of the base classifiers). The exact form of the pseudolossis under the control of
the boosting algorithm, and the base learning algorithm must therefore be designed to handle changes
in the form of the loss measure.

Base learning algorithms. In our experiments, for the base learning agorithm, we used C4.5. We
also used a simple agorithm for finding the best single-node, binary-split decision tree (a decision
“stump”). Sincethis latter agorithmis very weak, we used the “pseudoloss’ versions of boosting and
bagging, as described above. (See Freund and Schapire [20, 18] for details.)

Results. Figures4 and 5 show error curves and margin distribution graphsfor the three datasets, three
voting methods and two base learning algorithms. Note that each figure corresponds only to a single
run of each agorithm.

Asexplained in theintroduction, each of thelearning curve figures showsthetraining error (bottom)
and test error (top) curves. We have aso indicated as horizonta grid lines the error rate of the base
classifier whenrunjust once, aswell astheerror rateof thecombined classifier after 1000 iterations. Note
the log scale used in these figures. Margin distribution graphs are shown for 5, 100 and 1000 iterations
indicated by short-dashed, long-dashed (sometimes barely visible) and solid curves, respectively.

Itisinteresting that, across datasets, all of thelearning al gorithmstend to produce margin distribution
graphs of roughly the same character. As already noted, when used with C4.5, boosting is especially
aggressive at increasing the margins of the examples, so much so that it is“willing” to suffer significant
reductions in the margins of those examples that already have large margins. This can be seen in
Figure 4, where we observe that the maxima margin in the fina classifier is bounded well awvay from
1. Contrast thiswith the margin distribution graphs after 1000 iterations of bagging in which as many
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Kong & Dietterich [26] definitions Breiman [8] definitions

stumps C45 stumps C45

error pseudoloss error error pseudoloss error
— | boost | bag | boost | bag — | boost | bag — | boost | bag | boost | bag — | boost | bag
waveform  bias 26.0 38 228 0.8 119 15 0.5 14 || 19.2 26 157 0.5 7.9 0.9 0.3 14
var 5.6 2.8 4.1 3.8 8.6 | 14.9 3.7 5.2 || 125 40 112 41 125 | 155 3.9 5.2
error || 447 196 399 177 335 | 294 172 197 || 447 196 399 177 335|294 172 197
twonorm bias 25 0.6 2.0 0.5 0.2 0.5 1.3 0.3 11 0.3 0.1 0.3
var 28.5 23 173 18.7 1.8 54 || 29.6 26 182 19.0 1.9 5.6
error || 33.3 53 217 21.6 4.4 8.3 || 33.3 53 217 21.6 4.4 8.3
threenorm  bias 245 6.3 21.6 4.7 2.9 50 || 14.2 41 138 2.6 1.9 31
var 6.9 5.1 4.8 16.7 5.2 6.8 || 17.2 73 126 18.8 6.3 8.6
error || 419 220 36.9 319 186 223 || 419 220 36.9 319 186 223
ringnorm bias 46.9 41 469 2.0 0.7 1.7 || 32.3 27 37.6 11 0.4 11
var -7.9 66 7.1 15.5 2.3 6.3 6.7 8.0 2.2 16.4 2.6 6.9
error || 406 122 414 19.0 4.5 95 || 406 122 414 19.0 4.5 9.5
bias 49.2 491 49.2 77 351 7.7 5.5 8.9 || 490 49.0 49.0 53 297 5.1 35 6.2
Dietterich var 0.2 0.2 0.2 5.1 35 7.2 6.6 4.3 0.4 0.3 0.5 7.5 8.9 9.8 8.5 6.9
error || 495 493 495 128 386 | 149 121 131 || 495 493 495 128 386 | 149 121 131

Table 1: Results of bias-variance experiments using boosting and bagging on five synthetic datasets (described
in Appendix B). For each dataset and each learning method, we estimated bias, variance and generalization
error rate, reported in percent, using two sets of definitions for bias and variance (given in Appendix C). Both
C4.5 and decision stumps were used as base learning algorithms. For stumps, we used both error-based and
pseudol oss-based versions of boosting and bagging on problems with more than two classes. Columns labeled
with adash indicate that the base |earning a gorithm was run by itself.

as haf of the examples have amargin of 1.

The graphs for ECOC with C4.5 resemble in shape those for boosting more so than bagging, but
tend to have overall lower margins.

Note that, on every dataset, both boosting and bagging eventually achieve perfect or nearly perfect
accuracy on the training sets (at least 99%), but the generdization error for boosting is better. The
explanation for thisis evident from the margin distribution graphs where we see that, for boosting, far
fewer training examples have margin close to zero.

It should be borne in mind that, when combining decision trees, the complexity of the trees (as
measured, say, by the number of leaves), may vary greatly from one combination method to another.
As a result, the margin distribution graphs may not necessarily predict which method gives better
generdization error. One must also aways consider the complexity of the base classifiers, as explicitly
indicated by Theorems 1 and 2.

When used with stumps, boosting can achieve training error much smaller than that of the base
learner; however it is unableto achieve large margins. Thisis because, consistent with Theorem 5, the
base classifiers have much higher training errors. Presumably, such low margins do not adversely affect
the generalization error because the complexity of decision stumpsis so much smaller than that of full
decision trees.

5 Relation toBias-variance Theory

One of themain explanationsfor the improvements achieved by voting classifiersisbased on separating
the expected error of a classifier into a bias term and a variance term. While the details of these
definitions differ from author to author [8, 25, 26, 40], they are all attempts to capture the following
guantities: The bias term measures the persistent error of the learning agorithm, in other words, the
error that would remain even if we had an infinite number of independently trained classifiers. The
variance term measuresthe error that isdueto fluctuationsthat are apart of generating asingleclassifier.
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The ideais that by averaging over many classifiers one can reduce the variance term and in that way
reduce the expected error.

In this section, we discuss a few of the strengths and weaknesses of bias-variance theory as an
explanation for the performance of voting methods, especially boosting.

5.1 The bias-variance decomposition for classification.

The origins of bias-variance anaysis are in quadratic regression. Averaging severa independently
trained regression functions will never increase the expected error. This encouraging fact is nicely
reflected in the bias-variance separation of the expected quadratic error. Both bias and variance are
always nonnegative and averaging decreases the variance term without changing the bias term.

Onewould naturaly hope that this beautiful analysiswould carry over from quadratic regression to
classification. Unfortunately, as has been observed before us, (see, for instance, Friedman [22]) taking
the magjority vote over several classification rules can sometimes result in an increase in the expected
classification error. This simple observation suggests that it may be inherently more difficult or even
impossible to find a bias-variance decomposition for classification as natural and satisfying as in the
quadratic regression case.

Thisdifficulty isreflected in the myriad definitionsthat have been proposed for biasand variance [8,
25, 26, 40]. Rather than discussing each one separately, for the remainder of this section, except where
noted, we follow the definitions given by Kong and Dietterich [26], and referred to as “ Definition 0" by
Breiman [8]. (These definitions are given in Appendix C.)

5.2 Bagging and variancereduction.

The notion of variance certainly seems to be helpful in understanding bagging; empirically, bagging
appears to be most effective for learning algorithms with large variance. In fact, under idedlized
conditions, variance is by definition the amount of decrease in error effected by bagging alarge number
of base classifiers. Thisided situation is onein which the bootstrap samples used in bagging faithfully
approximate truly independent samples. However, thisassumption can fail to hold in practice, in which
case, bagging may not perform as well as expected, even when variance dominatesthe error of the base
learning algorithm.

This can happen even when the data distributionis very simple. As asomewhat contrived example,
consider data generated according to the following distribution. The label y € {—1,41} is chosen
uniformly at random. Theinstance z € {—1,+1}' isthen chosen by picking each of the 7 bits to be
equal toy with probability 0.9 and —y with probability 0.1. Thus, each coordinate of « isan independent
noisy version of . For our base learner, we use alearning a gorithm which generates a classifier that is
equal to the single coordinate of = which isthe best predictor of i with respect to the training set. It is
clear that each coordinate of = has the same probability of being chosen as the classifier on a random
training set, so the aggregate predictor over many independently trained samples is the unweighted
majority vote over the coordinates of =, which isalso the Bayes optima predictor inthiscase. Thus, the
bias of our learning algorithm is exactly zero. The prediction error of the mgjority ruleisroughly 0.3%,
and so avariance of about 9.7% strongly dominatesthe expected error rate of 10%. In such afavorable
case, one would predict, according to the bias-variance explanation, that bagging could get close to the
error of the Bayes optimal predictor.

However, using atraining set of 500 examples, the generalization error achieved by bagging is5.6%
after 200 iterations. (All results are averaged over many runs.) The reason for this poor performance
isthat, in any particular random sample, some of the coordinates of » are slightly more correlated with
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y and bagging tends to pick these coordinates much more often than the others. Thus, in this case, the
behavior of bagging is very different from its expected behavior on truly independent training sets.
Boosting, on the same data, achieved atest error of 0.6%.

5.3 Boosting and variance reduction.

Breiman [8] argued that boosting is primarily a variance-reducing procedure. Some of the evidence
for this comes from the observed effectiveness of boosting when used with C4.5 or CART, agorithms
known empirically to have high variance. Asthe error of these algorithmsis mostly due to variance, it
is not surprising that the reduction in the error is primarily due to areduction in the variance. However,
our experiments show that boosting can also be highly effective when used with learning agorithms
whose error tends to be dominated by bias rather than variance.®

We ran boosting and bagging on four artificial datasets described by Breiman [8], as well as the
artificial problem studied by Kong and Dietterich [26]. Following previousauthors, we used training sets
of size200for thelatter problem and 300 for the others. For the base learning algorithm, wetested C4.5.
We aso used the decision-stump base-learning algorithm described in Section 4. We then estimated
bias, variance and average error of these algorithms by rerunning them 1000 times each, and evaluating
them on atest set of 10,000 examples. For these experiments, we used both the bias-variance definitions
given by Kong and Dietterich [26] and those proposed more recently by Breiman [8]. (Definitions are
given in Appendix C.) For multiclass problems, following Freund and Schapire [18], we tested both
error-based and pseudol oss-based versions of bagging and boosting. For two-class problems, only the
error-based versions were used.

Theresults are summarized in Table 1. Clearly, boosting is doing more than reducing variance. For
instance, on “ringnorm,” boosting decreases the overall error of the stump algorithm from 40.6% to
12.2%, but actually increases the variance from —7.9% to 6.6% using Kong and Dietterich’s definitions,
or from 6.7% to 8.0% using Breiman’s definitions. (We did not check the statistical significance of this
increase.)

Breiman al so tested boosting with alow-variance base |earning a gorithm—namely, linear discrim-
inant analysis (L DA)—and attributed the ineffectiveness of boosting in this case to the “ stahility” (low
variance) of LDA. The experimentswith thefairly stable stump algorithm suggest that stability in itself
may not be sufficient to predict boosting'sfailure.

Our theory suggests a different characterization of the cases in which boosting might fail. Taken
together, Theorem 1 and Theorem 5 state that boosting can perform poorly only when either (1) thereis
insufficient training datarel ativeto the complexity” of thebaseclassifiers, or (2) thetraining errorsof the
base classifiers (the ¢;’s in Theorem 5) become too large too quickly. Certainly, this characterization is
incompl etein that boosting often succeeds even in situationsin which the theory provides no guarantees.
However, while we hope that tighter bounds can be given, it seems unlikely that there existsa*“ perfect”
theory. By a* perfect” theory we mean here arigorous anaysis of voting methodsthat, on the one hand,
is general enough to apply to any base learning algorithm and to any i.i.d. source of labeled instances
and on the other hand gives bounds that are accurate predictors of the performance of the algorithmin
practice. Thisisbecausein any practical situationthereis structurein the data and in the base learning
algorithm that is not taken into account in the assumptions of ageneral theory.

5In fact, the original goal of boosting was to reduce the error of so-called “weak” |earning algorithms which tend to have
very large bias. [17, 20, 34]
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5.4 Why averaging can increase complexity

In this section, we chalenge a common intuition which says that when one takes the mgjority vote
over severa base classifiers the generalization error of the resulting classifier is likely to be lower than
the average generalization error of the base classifiers. In this view, voting is seen as a method for
“smoothing” or “averaging” the classification rule. This intuition is sometimes based on the bias-
variance anaysis of regression described in the previous section. Also, to some, it seemsto follow from
a Bayesian point of view according to which integrating the classifications over the posterior is better
than using any single classifier. If one feels comfortable with these intuitions, there seems to be little
point to most of the analysis given in this paper. It seems that because AdaBoost generates a majority
vote over several classifiers, its generalization error is, in general, likely to be better than the average
generdization error of the base classifiers. According to this point of view, the suggestion we makein
the introduction that the majority vote over many classifiers is more complex than any single classifier
seems to be irrelevant and misled.

In this section, we describe a base learning a gorithm which, when combined using AdaBoost, is
likely to generate a magjority vote over base classifiers whaose training error goes to zero, while at the
same time the generalization error does not improve at al. In other words, it isa case in which voting
resultsin over-fitting. Thisisacase in which the intuition described above seemsto break down, while
the margin-based analysis developed in this paper gives the correct answer.

Suppose we use classifiers that are delta-functions, i.e., they predict +1 on asingle point in the input
space and —1 everywhere else, or vice versa(—1 on one point and 41 elsewhere). (If you disike delta-
functions, you can replace them with nicer functions. For example, if theinput spaceisR”, use balls of
sufficiently small radius and makethe prediction +1 or —1inside, and —1 or +1, respectively, outside.)
To this class of functionswe add the constant functions that are —1 everywhere or +1 everywhere.

Now, for any training sample of size m we can easily construct aset of at most 2m functions from
our class such that the mgjority vote over these functionswill awaysbe correct. To do this, we associate
one deltafunction with each training example; the deltafunction gives the correct value on the training
example and the opposite value everywhere else. Letting m and m_ denote the number of positive
and negative examples, we next add m. copies of the function which predicts 41 everywhere, and m _
copies of thefunction which predicts —1 everywhere. It can now be verified that the sum (majority vote)
of al these functions will be positive on all of the positive examples in the training set, and negative on
all the negative examples. In other words, we have constructed a combined classifier which exactly fits
the training set.

Fitting the training set seems like a good thing; however, the very fact that we can easily fit such a
rule to any training set implies that we don't expect the rule to be very good on independently drawn
points outside of the training set. In other words, the complexity of these average rules is too large,
relative to the size of the sample, to make them useful. Note that this complexity is the result of
averaging. Each one of the deltarulesis very simple (the VC-dimension of this class of functionsis
exactly 2), and indeed, if we found a single delta function (or constant function) that fit alarge sample
we could, with high confidence, expect the rule to be correct on new randomly drawn examples.

How would boosting perform in this case? It can be shown using Theorem 5 (with § = 0) that
boosting would slowly but surely find a combination of the type described above having zero training
error but very bad generalization error. A margin-based analysis of this example shows that while al
of the classifications are correct, they are correct only with atiny margin of size O(1/m), and so we
cannot expect the generalization error to be very good.
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Figure 6: The maximal margins classification method. In thisexample, the raw data point » isan element of IR,
but in that space the positive and negative examples are not linearly separable. The raw input is mapped to a point
in a high dimensional space (here ) by afixed nonlinear transformation h. Inthe high dimensional space, the
classes are linearly separable. The vector & is chosen to maximize the minimal margin 6. The circled instances
are the support vectors; Vapnik showsthat & can awaysbe written as alinear combination of the support vectors.

6 Relation to Vapnik’sMaximal Margin Classifiers

The use of the margins of real-valued classifiers to predict generalization error was previously studied
by Vapnik [42] in hiswork with Boser and Guyon [5] and Cortes [10] on optimal margin classifiers.

We start with a brief overview of optima margin classifiers. One of the main ideas behind this
method isthat some nonlinear classifiers on alow dimensional space can be treated as linear classifiers
over a high dimensional space. For example, consider the classifier that labels an instance » € R as
+1if 225 — 522 + 2 > 10 and —1 otherwise. This classifier can be seen as a linear classifier if we
represent each instance by the vector h(z) = (1, z, 22 23, 2% 25). If weset @ = (-10,1, -5,0,0,2)
then the classification is+1 when & - h(z) > 0 and —1 otherwise. In atypical case, the data consists
of about 10, 000 instances in B which are mapped into »090:0%0  vapnik introduced the method
of kernels which provides an efficient way for calculating the predictions of linear classifiers in the
high dimensiona space. Using kernels, it is usualy easy to find alinear classifier that separates the
data perfectly. In fact, it is likely that there are many perfect linear classifiers, many of which might
have very poor generalization ability. In order to overcome this problem, the prescription suggested by
Vapnik is to find the classifier that maximizes the minima margin. More precisely, suppose that the
training sample S consists of pairs of the form (z, y) where z istheinstanceand y € {—1, +1} isits
label. Assume that ﬁ(x) is some fixed nonlinear mapping of instances into k™ (where n is typicaly
very large). Then the maxima margin classifier is defined by the vector & which maximizes

min M (12)
@yves a2

Here, ||@||2 is the [> or Euclidean norm of the vector &. A graphica sketch of the maxima margin
method isgivenin Figure 6. For the analysis of this method, Vapnik assumesthat al of the vectors h (x)
are enclosed within a ball of radius R, i.e., they al are within Euclidean distance R from some fixed
vector inR". Without loss of generality, we can assumethat R = 1.
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Vapnik [42] showed that the VC dimension of all linear classifierswithminimummargin at least 6 is
upper bounded by 1/62. This result impliesbounds on the generalization error in terms of the expected
minima margin on test points which do not depend on the dimension » of the space into which the
data are mapped. However, typically, the expected value of the minimal margin is not known. Shawe-
Taylor et a. [38] used techniques from the theory of learning real-valued functions to give bounds on
generalization error in terms of margins on the training examples. Shawe-Taylor et al. [39] also gave
related results for arbitrary real classes.

Consider therelation between Equation (10) and the argument of the minimumin Equation (12). We
can view the coefficients {a;}._, asthe coordinates of avector @ € ™ and the predictions { h; (z)}7_,
as the coordinates of the vector i (z) € {—1,+1}”. Then we can rewrite Equation (10) as

=
=

where ||d@||1 = S°L; |oy| isthel; norm of @. Inour analysis, we use the fact that all of the components
Of_ﬁ(ac) areintherange [ 1, +1], or, in other words that the max or /., norm of 4(z) is bounded by 1:
17 () oo = maxI_y [hy(x)] < 1.

Viewed this way, the connection between maximal margin classifiers and boosting becomes clear.
Both methodsaim to find alinear combination in ahigh dimensional space which hasalarge margin on
the instances in the sample. The norms used to define the margin are different in the two cases and the
precise god is dso different—maximal margin classifiers aim to maximize the minimal margin while
boosting aims to minimize an exponential weighting of the examples as a function of their margins.
Our interpretation for these differences is that boosting is more suited for the case when the mapping
h maps x into a high dimensiona space where all of the coordinates have a similar maximal range,
such as {—1,+1}. On the other hand, the optimal margin method is suitable for cases in which the
Euclidean norm of /2(z) islikely to be small, such asisthe casewhen /2 isan orthonormal transformation
between inner-product spaces. Related to this, the optima margin method uses quadratic programming
for its optimization, whereas the boosting agorithm can be seen as a method for approximate linear
programming [7, 19, 21, 23].

Both boosting and support vector machinesaim to find alinear classifier in avery high dimensiona
space. However, computationally, they are very different: support vector machines use the method of
kernels to perform computationsin the high dimensional space while boosting relies on abase learning
algorithm which explores the high dimensiona space one coordinate at atime.

Vapnik [42] gave an dternative analysis of optimal margin classifiers, based on the number of
support vectors, i.e., the number of examples that define the final classifier. Thisanaysisis preferable
to the analysis that depends on the size of the margin when only a few of the training examples are
support vectors. Previous work [17] has suggested that boosting aso can be used as a method for
selecting a small number of “informative” examples from the training set. Investigating the relevance
of this type of bound when applying boosting to real-world problems is an interesting open research
direction.

7 Other lossfunctions

We describe briefly related work which has been done on | oss functions other than the 0-1 | oss.

For quadratic loss, Jones[24] and Barron [1] have shown that functionsin the convex hull of a class
‘H of real-valued functions can be approximated by a convex combination of N elements of 7{ to an
accuracy of O(1/N) by iteratively adding the member of 74 which minimizes the residual error to the
existing convex combination. Lee, Bartlett and Williamson [27] extended this result to show that the

22



procedure will converge to the best approximationin the convex hull of 7 even when the target function
isnot intheconvex hull of 7{. Lee, Bartlett and Williamson [27, 28] a so studied the generalization error
when this procedure isused for learning. In results analogousto those presented here, they showed that
the generalization error can be bounded in terms of the sum of the absol ute val ues of the output weights
(when the members of 7 are normalized to have output values in the interval [—1, 1]), rather than in
terms of the number of componentsin the convex combination.

Similar work on iterative convex approximationin L,, spaces was presented by Donahue et al. [14].
To the best of our knowledge, similar iterative schemes for combining functions have not been studied
for thelog loss.

Extensionsof boosting to solveregression problems have been suggested by Freund [17] and Freund
and Schapire [20]. These extensions are yet to be tested in practice. Drucker [15] experimented with a
different extension of boosting for regression and reported some encouraging results.

8 Open Problems

The methods in this paper alow us to upper bound the generalization error of a voted classifier based
on simple stati stics which can be measured using the training data. These statisticsare afunction of the
empirical distribution of the margins. While our bounds seem to explain the experiments qualitatively,
their quantitative predictions are greatly over pessimistic. The challenge of coming up with better
bounds can be divided into two questions. First, can one give better bounds that are a function of the
empirical margins distribution? Second, are there better bounds that are functions of other statistics?

A different approach to understanding the behavior of AdaBoost isto find functions of the training
set which predict the generalization error well on all or most of the datasets encountered in practice.
While this approach does not give one the satisfaction of a mathematical proof, it might yield good
resultsin practice.
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A Generalization Error for Multiclass Problems

In this appendix, we describe how Theorems 1 and 2 can be extended to multiclass problems.

Suppose there are £ classes, and define Y = {1, 2, ..., k} as the output space. We formally view
the base classifiers h € # asmappingsfrom X x Y to{0, 1}, with theinterpretation that if ~(z,y) = 1
then y ispredicted by / to be aplausiblelabel for 2. This general form of classifier covers the forms of
base classifiers used throughout this paper. For simple classifiers, like the decision trees computed by
CA4.5, only asinglelabel is predicted so that, for each =, (2, y) = 1 for exactly onelabel y. However,
some of the other combination methods — such as pseudol oss-based boosting or bagging, as well as
Dietterich and Bakiri’s output-coding method — use base classifiers which vote for a set of plausible
labels so that i (x, y) may be 1 for several labels y.

We define the convex hull € of H as

C= {f(w,y)l—> Zahh(w,y) ap > 0; Zahzl},

heH h

so aclassifier finC predicts label y for input = if f(z,y) > max, ., f(x,y’) (and ties are broken
arbitrarily). We define the margin of an example (z, y) for such afunction f as

margin(f, z,y) = f(z,y) — gﬁzf(wyy’)- (13)
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Clearly, f givesthewrong prediction on (z, y) only if margin(f, z, y) < 0. With these definitions, we
have the following generalization of Theorems 1 and 2.

Theorem 6 Let D be a distribution over X x Y, and let S be a sample of m examples chosen
independently at random according to D. Assume that the base-classifier space 7 is finite, and let
6 > 0. Then with probability at least 1 — & over the random choice of the training set .5, every function
f € C satisfiesthe following bound for all # > O:

" 1/2
Pp [margin(f. z.y) < 0] < Ps [margin(f,x,mso]w( = (P gy )

Moregenerally, for finiteor infinite?{ with VC-dimension d, thefoll owing bound holdsaswell, assuming
that m > d > 1:

1/2
Py [margin(/, . y) < 0] < Ps [margin(f, ) < 0] + O ( jm (d"’gng’“/ & +Iog<1/<s>) )

Proof: The proof closely follows that of Theorem 1, so we only describe the differences. We first

consider the case of finite #.
N
Zhi(w,y) h; € 7{} .
=1

First, we define
As in the proof of Theorem 1, for any f € C we choose an approximating function g € Cx according
to the distribution Q, and we have

z|r

CNi{f:(x,y)H

PD [margln(f7 L, y) < 0] < EgNQ [PD [margln(g7 L, y) < 0/2]]
+Ep [Pyuo [margin(g, z,y) > 6/2 | margin(f, =, y) < 0]] .

We bound the second term of the right hand side as follows: Fix f, = and y, and let y' # y achieve the
maximum in Equation (13) so that

margin( f,z,y) = f(z,y) — f(z,y').
Clearly, margin(g, x,y) < g(x,y) — g(=,y") and

Ejuolg(z,y) — g(z, )] = flz,y) = f(z,9)

Pyo [margin(g, z,y) > 0/2 | margin(f, z, y) < 0]

Py [g(z,y) — g(x,y) > 0/2] flx,y) — fz,y') <O
o~ NE/8

IN A

using the Chernoff bound.
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Equations (5) and (6) follow exactly asin the proof of Theorem 1 with y f(2) and yg(z) replaced
by margin( f, =, y) and margin(g, z, y). We can derive the analog of Equation (7) as follows:

P,o [margin(g, z,y) < /2 | margin(f, z, y) > 6]
= Pyo[ W #y:g9(x,y)—gz,y) <0/2|V £y fla,y)— flz,y) > 0]
< S Pyolg(zy)— gz, y) <0/2] fz,y) — fla,y) > 6]

y'#y

(k — 1)e"N¢/8

IN

Proceeding as in the proof of Theorem 1, we see that, with probability at least 1 — §, forany § > 0
and N > 1,

Pp [margin(f, z,y) < 0] < P [margin(f, z,y) < 6] + ke N"/8 4 ¢i In (N(N—l— 1)2|7-[|N)‘

J

2m

Setting N = [(4/62) In(mk?/In|#H]|)] givesthe result.
For infinite 7, we follow essentially the same modifications to the argument above as used in the
proof of Theorem 2. As before, to apply Lemma3, we need to derive an upper bound on s(.A, m) where

A={{(z,y) € X XY :margin(g,z,y) > 0/2} : g € Cyn, 6 > 0}.

Letzq,...,2, € X andyi,...,u, € Y. Then applying Sauer's lemmato the set {(z;,y) : 1 < i <
m,y € Y} gives

d m em d
(a1, 1),y (e, k)i B, 1),y B k)Y S h € HY < (kz ) . ( k) _
=0

d
Thisimpliesthat
k dN
{(g(e1, D), g(an, k)i g(wm 1), (e, b)) 2 g € O] < (673 ) ,
and hence
i . JANEA
[{(margin(g. 23, 51). ..., mexgin(g. 2,0, ) 9 € O} < (55)

Thus, s(A, m) < (N + 1)(emk/d)*N. Proceeding as before, we obtain the bound

Pp [magin(f,z,y) <0] < Pg[margin(f,z,y) < 0] + ke N0/8

2 8 2
Ny (len(em k) LindENVAY )
2m d o

Setting NV as above completesthe proof. |

B Brief Descriptionsof Datasets
In this appendix, we briefly describe the datasets used in our experiments.
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# examples # #
name train | test | classes | features
vehicle 423 423 4 18
satimage | 4435 2000 6 36
|etter 16000 4000 26 16

Table 2: The three benchmark machine-learning problems used in the experiments.

B.1 Non-synthetic datasets

In Section 4, we conducted experiments on three non-synthetic datasets called “letter,” “ satimage” and
“vehicle” All three are available from the repository at the University of Californiaat Irvine [30].

Some of the basic characteristics of these datasets are given in Table 2. The letter and satimage
datasets came with their own test sets. For the vehicle dataset, we randomly selected half of the datato
be held out as atest set. All features are continuous (real-valued). None of these datasets have missing
values.

The letter benchmark is a letter image recognition task. The dataset was created by David J. Slate.
According to the documentation provided with this dataset, “ The objectiveisto identify each of alarge
number of black-and-white rectangular pixel displays as one of the 26 capital letters in the English
alphabet. The character images were based on 20 different fonts and each letter within these 20 fonts
was randomly distorted to produce afile of 20,000 unique stimuli. Each stimuluswas converted into 16
primitive numerical attributes (statistical moments and edge counts) which were then scaled to fit into
arange of integer values from 0 through 15.”

The satimage dataset is the statlog version of a satellite image dataset. According to the docu-
mentation, “This database consists of the multi-spectral values of pixelsin 3 x 3 neighborhoodsin a
satellite image, and the classification associated with the central pixel in each neighborhood. The aim
is to predict this classification, given the multi-spectral values... The original database was generated
from Landsat Multi-Spectral Scanner image data... purchased from NASA by the Australian Center for
Remote Sensing, and used for research at The Center for Remote Sensing... The sample database was
generated taking asmall section (82 rows and 100 columns) from the origina data. The binary values
were converted to their present ASCIl form by Ashwin Srinivasan. The classification for each pixel
was performed on the basis of an actual site visit by Ms. Karen Hall, when working for Professor John
A. Richards.... Conversionto 3 x 3 neighborhoods and splitting into test and training sets was done by
Alistair Sutherland....”

The purpose of the vehicle dataset, according to its documentation, is “to classify a given silhouette
as one of four types of vehicle, using a set of features extracted from the silhouette. The vehicle may
be viewed from one of many different angles... This dataset comes from the Turing Institute... The
[extracted] features were a combination of scale independent features utilizing both classical moments
based measures such as scaled variance, skaewnessand kurtosi s about the major/minor axes and heuristic
measures such as hollows, circularity, rectangularity and compactness. Four ‘Corgie’ model vehicles
were used for the experiment: adouble decker bus, Chevrolet van, Saab 9000 and an Opel Manta400....
The images were acquired by a camera looking downwards at the model vehicle from a fixed angle of
elevation...”
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Figure 7: The 2-dimension, 6-class classification problem defined by Kong and Dietterich [26] on the region
[0,15] x [0, 15].

B.2 Synthetic datasets

In Section 5, we described experiments using synthetically generated data. Twonorm, threenorm and
ringnorm were taken from Breiman [8]. Quoting from him:

e Twonorm: Thisis 20-dimension, 2-class data. Each class is drawn from a multivariate normal
distribution with unit covariance matrix. Class #1 has mean («, «, ..., a) and class #2 has mean
(—a,—a,...,—a) wherea = 2/+/20.

e Threenorm: This is 20-dimension, 2-class data Class #1 is drawn with equal probability
from a unit multivariate normal with mean («a, «a, ...,a) and from a unit multivariate normal
with mean (—a, —a,...,—a). Class #2 is drawvn from a unit multivariate normal with mean
(a,—a,a, —a, ..., —a) where a = 2/+/20.

e Ringnorm: Thisis20-dimension, 2-classdata. Class#1ismultivariatenormal with mean zero and
covariance matrix 4 timestheidentity. Class#2 has unit covariance matrix and mean («a, «, ..., a)
where a = 1/+/20.

The waveform datais 21-dimension, 3-class data. It is described by Breiman et al. [9]. A program
for generating this datais available from the UCI repository [30].

Thelast dataset wastaken from Kong and Dietterich[26]. Thisisa2-dimension, 6-classclassification
problem where the classes are defined by the regions of [0, 15] x [0, 15] shown in Figure 7.

C Two Definitions of Bias and Variance for Classification

For the sake of compl eteness, we include here thedefinitionsfor biasand variance for classification tasks
which we have used in our experiments. The first set of definitionsis due to Kong and Dietterich [26]
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and the second one is due to Breiman [8]. Assume that we have an infinite supply of independent
training sets S of sizem. Each sample.S isdrawni.i.d. from afixed distribution D over X x {1,...,k}
where k is the number of classes. Denote by C's the classifier that is generated by the base learning
algorithm given the sample S. Denote by C'4 the classification rule that results from running the base
learning a gorithm on an infinite number of independent training sets and taking the plurality vote® over
the resulting classifiers. Finally denote by C™* the Bayes optimal prediction rule for the distribution
D. The prediction of aclassifier C' on aninstance z € X isdenoted C'(z) and the expected error of a
classifier ' is denoted
PE(C) = Py yep [Clz) # 4] -

The definitions of Kong and Dietterich are:

Bias = PE(C4)— PE(CY),
Variance = Eg.pm [PE(Cs)] — PE(CA) .

Breiman defines a partition of the sample space into two sets. The “unbiased” set U consists of all
x € X for which C4(z) = C*(2) and the “biased” set B is U’s complement. Given these sets the
definition of bias and variance are:

Bias = P(x,y)ND [C*($) =y re B] — Eswpm [P(x,y)ND [CS(x) =y re BH )

Variance = P(x,y)ND [C*(ac) =y, € U] — Es.pm {P(x,y)ND [Cs(w) =y, € UH .

5The plurality vote outputs the class which receives the largest number of votes, breaking ties uniformly at random. When
k = 2theplurality vote is equal to the majority vote.
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