
The Annals of Statistics, 26(5):1651-1686, 1998.

Boosting the Margin:
A New Explanation for the Effectiveness of Voting Methods

Robert E. Schapire
AT&T Labs

180 Park Avenue, Room A279
Florham Park, NJ 07932-0971 USA

schapire@research.att.com

Yoav Freund
AT&T Labs

180 Park Avenue, Room A205
Florham Park, NJ 07932-0971 USA

yoav@research.att.com

Peter Bartlett
Dept. of Systems Engineering

RSISE, Aust. National University
Canberra, ACT 0200 Australia

Peter.Bartlett@anu.edu.au

Wee Sun Lee
School of Electrical Engineering

University College UNSW
Australian Defence Force Academy

Canberra ACT 2600 Australia
w-lee@ee.adfa.oz.au

May 7, 1998

Abstract. One of the surprising recurring phenomena observed in experiments with boosting is that
the test error of the generated classifier usually does not increase as its size becomes very large, and
often is observed to decrease even after the training error reaches zero. In this paper, we show that
this phenomenon is related to the distribution of margins of the training examples with respect to the
generated voting classification rule, where the margin of an example is simply the difference between
the number of correct votes and the maximum number of votes received by any incorrect label. We show
that techniques used in the analysis of Vapnik’s support vector classifiers and of neural networks with
small weights can be applied to voting methods to relate the margin distribution to the test error. We
also show theoretically and experimentally that boosting is especially effective at increasing the margins
of the training examples. Finally, we compare our explanation to those based on the bias-variance
decomposition.

1 Introduction

This paper is about methods for improving the performance of a learning algorithm, sometimes also
called a prediction algorithm or classification method. Such an algorithm operates on a given set
of instances (or cases) to produce a classifier, sometimes also called a classification rule or, in the
machine-learning literature, a hypothesis. The goal of a learning algorithm is to find a classifier with
low generalization or prediction error, i.e., a low misclassification rate on a separate test set.

In recent years, there has been growing interest in learning algorithms which achieve high accuracy
by voting the predictions of several classifiers. For example, several researchers have reported significant
improvements in performance using voting methods with decision-tree learning algorithms such as C4.5
or CART as well as with neural networks [3, 6, 8, 12, 13, 16, 18, 29, 31, 37].

We refer to each of the classifiers that is combined in the vote as a base classifier and to the final
voted classifier as the combined classifier.

As examples of the effectiveness of these methods, consider the results of the following two
experiments using the “letter” dataset. (All datasets are described in Appendix B.) In the first experiment,

1

we used Breiman’s bagging method [6] on top of C4.5 [32], a decision-tree learning algorithm similar
to CART [9]. That is, we reran C4.5 many times on random “bootstrap” subsamples and combined the
computed trees using simple voting. In the top left of Figure 1, we have shown the training and test error
curves (lower and upper curves, respectively) of the combined classifier as a function of the number of
trees combined. The test error of C4.5 on this dataset (run just once) is 13.8%. The test error of bagging
1000 trees is 6.6%, a significant improvement. (Both of these error rates are indicated in the figure as
horizontal grid lines.)

In the second experiment, we used Freund and Schapire’s AdaBoost algorithm [20] on the same
dataset, also using C4.5. This method is similar to bagging in that it reruns the base learning algorithm
C4.5 many times and combines the computed trees using voting. However, the subsamples that are used
for training each tree are chosen in a manner which concentrates on the “hardest” examples. (Details
are given in Section 3.) The results of this experiment are shown in the top right of Figure 1. Note that
boosting drives the test error down even further to just 3.1%. Similar improvements in test error have
been demonstrated on many other benchmark problems (see Figure 2).

These error curves reveal a remarkable phenomenon, first observed by Drucker and Cortes [16], and
later by Quinlan [31] and Breiman [8]. Ordinarily, as classifiers become more and more complex, we
expect their generalization error eventually to degrade. Yet these curves reveal that test error does not
increase for either method even after 1000 trees have been combined (by which point, the combined
classifier involves more than two million decision-tree nodes). How can it be that such complex
classifiers have such low error rates? This seems especially surprising for boosting in which each new
decision tree is trained on an ever more specialized subsample of the training set.

Another apparent paradox is revealed in the error curve for AdaBoost. After just five trees have
been combined, the training error of the combined classifier has already dropped to zero, but the test
error continues to drop1 from 8.4% on round 5 down to 3.1% on round 1000. Surely, a combination
of five trees is much simpler than a combination of 1000 trees, and both perform equally well on the
training set (perfectly, in fact). So how can it be that the larger and more complex combined classifier
performs so much better on the test set?

The results of these experiments seem to contradict Occam’s razor, one of the fundamental principles
in the theory of machine learning. This principle states that in order to achieve good test error, the
classifier should be as simple as possible. By “simple,” we mean that the classifier is chosen from
a restricted space of classifiers. When the space is finite, we use its cardinality as the measure of
complexity and when it is infinite we use the VC dimension [42] which is often closely related to the
number of parameters that define the classifier. Typically, both in theory and in practice, the difference
between the training error and the test error increases when the complexity of the classifier increases.

Indeed, such an analysis of boosting (which could also be applied to bagging) was carried out by
Freund and Schapire [20] using the methods of Baum and Haussler [4]. This analysis predicts that
the test error eventually will increase as the number of base classifiers combined increases. Such a
prediction is clearly incorrect in the case of the experiments described above, as was pointed out by
Quinlan [31] and Breiman [8]. The apparent contradiction is especially stark in the boosting experiment
in which the test error continues to decrease even after the training error has reached zero.

Breiman [8] and others have proposed definitions of bias and variance for classification, and have
argued that voting methods work primarily by reducing the variance of a learning algorithm. This
explanation is useful for bagging in that bagging tends to be most effective when the variance is large.

1Even when the training error of the combined classifier reaches zero, AdaBoost continues to obtain new base classifiers
by training the base learning algorithm on different subsamples of the data. Thus, the combined classifier continues to evolve,
even after its training error reaches zero. See Section 3 for more detail.

2

Bagging Boosting
er

ro
r

(%
)

10 100 1000
0

5

10

15

20

10 100 1000
0

5

10

15

20

classifiers

cu
m

ul
at

iv
e

di
st

ri
bu

tio
n

-1 -0.5 0.5 1

0.5

1.0

-1 -0.5 0.5 1

0.5

1.0

margin

Figure 1: Error curves and margin distributiongraphs for bagging and boosting C4.5 on the letter dataset. Learning
curves are shown directly above corresponding margin distribution graphs. Each learning-curve figure shows the
training and test error curves (lower and upper curves, respectively) of the combined classifier as a function of the
number of classifiers combined. Horizontal lines indicate the test error rate of the base classifier as well as the test
error of the final combined classifier. The margin distribution graphs show the cumulative distribution of margins
of the training instances after 5, 100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden)
and solid curves, respectively.

However, for boosting, this explanation is, at best, incomplete. As will be seen in Section 5, large
variance of the base classifiers is not a requirement for boosting to be effective. In some cases, boosting
even increases the variance while reducing the overall generalization error.

Intuitively, it might seem reasonable to think that because we are simply voting the base classifiers,
we are not actually increasing their complexity but merely “smoothing” their predictions. However, as
argued in Section 5.4, the complexity of such combined classifiers can be much greater than that of the
base classifiers and can result in over-fitting.

In this paper, we present an alternative theoretical analysis of voting methods, applicable, for
instance, to bagging, boosting, “arcing” [8] and ECOC [13]. Our approach is based on a similar result
presented by Bartlett [2] in a different context. We prove rigorous, non-asymptotic upper bounds on the
generalization error of voting methods in terms of a measure of performance of the combined classifier
on the training set. Our bounds also depend on the number of training examples and the “complexity” of
the base classifiers, but do not depend explicitly on the number of base classifiers. Although too loose

3

0 5 10 15 20 25 30

bagging C4.5

0

5

10

15

20

25

30
C

4.
5

0 5 10 15 20 25 30

boosting C4.5

0

5

10

15

20

25

30

Figure 2: Comparison of C4.5 versus bagging C4.5 and boosting C4.5 on a set of 27 benchmark problems as
reported by Freund and Schapire [18]. Each point in each scatter plot shows the test error rate of the two competing
algorithms on a single benchmark. The y-coordinate of each point gives the test error rate (in percent) of C4.5 on
the given benchmark, and the x-coordinate gives the error rate of bagging (left plot) or boosting (right plot). All
error rates have been averaged over multiple runs.

to give practical quantitative predictions, our bounds do give a qualitative explanation of the shape of
the observed learning curves, and our analysis may be helpful in understanding why these algorithms
fail or succeed, possibly leading to the design of even more effective voting methods.

The key idea of this analysis is the following. In order to analyze the generalization error, one should
consider more than just the training error, i.e., the number of incorrect classifications in the training
set. One should also take into account the confidence of the classifications. Here, we use a measure
of the classification confidence for which it is possible to prove that an improvement in this measure
of confidence on the training set guarantees an improvement in the upper bound on the generalization
error.

Consider a combined classifier whose prediction is the result of a vote (or a weighted vote) over a set
of base classifiers. Suppose that the weights assigned to the different base classifiers are normalized so
that they sum to one. Fixing our attention on a particular example, we refer to the sum of the weights of
the base classifiers that predict a particular label as the weight of that label. We define the classification
margin for the example as the difference between the weight assigned to the correct label and the
maximal weight assigned to any single incorrect label. It is easy to see that the margin is a number in
the range [�1; 1] and that an example is classified correctly if and only if its margin is positive. A large
positive margin can be interpreted as a “confident” correct classification.

Now consider the distribution of the margin over the whole set of training examples. To visualize
this distribution, we plot the fraction of examples whose margin is at most x as a function of x 2 [�1; 1].
We refer to these graphs as margin distribution graphs. At the bottom of Figure 1, we show the margin
distribution graphs that correspond to the experiments described above.

Our main observation is that both boosting and bagging tend to increase the margins associated with

4

examples and converge to a margin distribution in which most examples have large margins. Boosting
is especially aggressive in its effect on examples whose initial margin is small. Even though the training
error remains unchanged (at zero) after round 5, the margin distribution graph changes quite significantly
so that after 100 iterations all examples have a margin larger than 0.5. In comparison, on round 5, about
7.7% of the examples have margin below 0:5. Our experiments, detailed later in the paper, show that
there is a good correlation between a reduction in the fraction of training examples with small margin
and improvements in the test error.

The idea that maximizing the margin can improve the generalization error of a classifier was
previously suggested and studied by Vapnik [42] and led to his work with Cortes on support-vector
classifiers [10], and with Boser and Guyon [5] on optimal margin classifiers. In Section 6, we discuss
the relation between our work and Vapnik’s in greater detail.

Shawe-Taylor et al. [38] gave bounds on the generalization error of support-vector classifiers in terms
of the margins, and Bartlett [2] used related techniques to give a similar bound for neural networks with
small weights. A consequence of Bartlett’s result is a bound on the generalization error of a voting
classifier in terms of the fraction of training examples with small margin.

In Section 2, we use a similar but simpler approach to give a slightly better bound. Here we give
the main intuition behind the proof. This idea brings us back to Occam’s razor, though in a rather
indirect way. Recall that an example is classified correctly if its margin is positive. If an example
is classified by a large margin (either positive or negative), then small changes to the weights in the
majority vote are unlikely to change the label. If most of the examples have a large margin then
the classification error of the original majority vote and the perturbed majority vote will be similar.
Suppose now that we had a small set of weighted majority rules that was fixed ahead of time, called
the “approximating set.” One way of perturbing the weights of the classifier majority vote is to find a
nearby rule within the approximating set. As the approximating set is small, we can guarantee that the
error of the approximating rule on the training set is similar to its generalization error, and as its error
is similar to that of the original rule, the generalization error of the original rule should also be small.
Thus, we are back to an Occam’s razor argument in which instead of arguing that the classification rule
itself is simple, we argue that the rule is close to a simple rule.

Boosting is particularly good at finding classifiers with large margins in that it concentrates on those
examples whose margins are small (or negative) and forces the base learning algorithm to generate good
classifications for those examples. This process continues even after the training error has reached zero,
which explains the continuing drop in test error.

In Section 3, we show that the powerful effect of boosting on the margin is not merely an empirical
observation but is in fact the result of a provable property of the algorithm. Specifically, we are able
to prove upper bounds on the number of training examples below a particular margin in terms of the
training errors of the individual base classifiers. Under certain conditions, these bounds imply that
the number of training examples with small margin drops exponentially fast with the number of base
classifiers.

In Section 4, we give more examples of margin distribution graphs for other datasets, base learning
algorithms and combination methods.

In Section 5, we discuss the relation of our work to bias-variance decompositions. In Section 6, we
compare our work to Vapnik’s optimal margin classifiers, and in Section 7, we briefly discuss similar
results for learning convex combinations of functions for loss measures other than classification error.

5

2 Generalization Error as a Function of Margin Distributions

In this section, we prove that achieving a large margin on the training set results in an improved bound
on the generalization error. This bound does not depend on the number of classifiers that are combined
in the vote. The approach we take is similar to that of Shawe-Taylor et al. [38] and Bartlett [2], but
the proof here is simpler and more direct. A slightly weaker version of Theorem 1 is a special case of
Bartlett’s main result.

We give a proof for the special case in which there are just two possible labels f�1;+1g. In
Appendix A, we examine the case of larger finite sets of labels.

Let H denote the space from which the base classifiers are chosen; for example, for C4.5 or CART,
it is the space of decision trees of an appropriate size. A base classifier h 2 H is a mapping from
an instance space X to f�1;+1g. We assume that examples are generated independently at random
according to some fixed but unknown distributionD over X � f�1;+1g. The training set is a list of
m pairs S = h(x1; y1); (x2; y2); : : : ; (xm; ym)i chosen according to D. We useP

(x;y)�D

[A] to denote
the probability of the event A when the example (x; y) is chosen according to D, and P

(x;y)�S

[A]
to denote probability with respect to choosing an example uniformly at random from the training set.
When clear from context, we abbreviate these by P

D

[A] and P
S

[A]. We use E
D

[A] and E
S

[A] to
denote expected value in a similar manner.

We define the convex hull C of H as the set of mappings that can be generated by taking a weighted
average of classifiers from H:

C

:

=

8

<

:

f : x 7!
X

h2H

a

h

h(x)

�

�

�

�

�

a

h

� 0;
X

h

a

h

= 1

9

=

;

where it is understood that only finitely many a

h

’s may be nonzero.2 The majority vote rule that is
associated with f gives the wrong prediction on the example (x; y) only if yf(x) � 0. Also, the margin
of an example (x; y) in this case is simply yf(x).

The following two theorems, the main results of this section, state that with high probability, the
generalization error of any majority vote classifier can be bounded in terms of the number of training
examples with margin below a threshold �, plus an additional term which depends on the number of
training examples, some “complexity” measure of H, and the threshold � (preventing us from choosing
� too close to zero).

The first theorem applies to the case that the base classifier space H is finite, such as the set of all
decision trees of a given size over a set of discrete-valued features. In this case, our bound depends only
on log jHj, which is roughly the description length of a classifier in H. This means that we can tolerate
very large classifier classes.

If H is infinite—such as the class of decision trees over continuous features—the second theorem
gives a bound in terms of the Vapnik-Chervonenkis dimension3 of H.

Note that the theorems apply to every majority vote classifier, regardless of how it is computed.
Thus, the theorem applies to any voting method, including boosting, bagging, etc.

2A finite support is not a requirement for our proof but is sufficient for the application here which is to majority votes over
a finite number of base classifiers.

3Recall that the VC-dimension is defined as follows: Let F be a family of functions f : X ! Y where jY j = 2.
Then the VC-dimension of F is defined to be the largest number d such that there exists x1; : : : ; xd 2 X for which
jfhf(x1); : : : ; f(xd)i : f 2 Fgj = 2d. Thus, the VC-dimension is the cardinality of the largest subset S of the space X for
which the set of restrictions to S of functions in F contains all functions from S to Y .

6

2.1 Finite base-classifier spaces

Theorem 1 Let D be a distribution over X � f�1; 1g, and let S be a sample of m examples chosen
independently at random according to D. Assume that the base-classifier space H is finite, and let
� > 0. Then with probability at least 1� � over the random choice of the training set S, every weighted
average function f 2 C satisfies the following bound for all � > 0:

P
D

�

yf(x) � 0
�

� P
S

�

yf(x) � �

�

+O

1
p

m

�

logm log jHj
�

2 + log(1=�)
�1=2

!

:

Proof: For the sake of the proof we define C
N

to be the set of unweighted averages over N elements
from H:

C

N

:

=

(

f : x 7!
1
N

N

X

i=1

h

i

(x)

�

�

�

�

�

h

i

2 H

)

:

We allow the same h 2 H to appear multiple times in the sum. This set will play the role of the
approximating set in the proof.

Any majority vote classifier f 2 C can be associated with a distribution over H as defined by the
coefficients a

h

. By choosing N elements of H independently at random according to this distribution
we can generate an element of C

N

. Using such a construction we map each f 2 C to a distributionQ
over C

N

. That is, a function g 2 C

N

distributed according to Q is selected by choosing h1; : : : ; hN

independently at random according to the coefficients a
h

and then defining g(x) = (1=N)

P

N

i=1 hi(x).
Our goal is to upper bound the generalization error of f 2 C. For any g 2 C

N

and � > 0 we can
separate this probability into two terms:

P

D

�

yf(x) � 0
�

� P

D

�

yg(x) � �=2
�

+P

D

�

yg(x) > �=2; yf(x) � 0
�

: (1)

This holds because, in general, for two events A and B,

P [A] = P [B \A] +P
h

B \A

i

� P [B] + P
h

B \A

i

: (2)

As Equation (1) holds for any g 2 C
N

, we can take the expected value of the right hand side with respect
to the distributionQ and get:

P

D

�

yf(x) � 0
�

� P

D;g�Q

�

yg(x) � �=2
�

+P

D;g�Q

�

yg(x) > �=2; yf(x) � 0
�

= E

g�Q

�

P

D

�

yg(x) � �=2
��

+E

D

�

P

g�Q

�

yg(x) > �=2; yf(x) � 0
��

� E

g�Q

�

P

D

�

yg(x) � �=2
��

+E

D

�

P

g�Q

�

yg(x) > �=2 j yf(x) � 0
��

: (3)

We bound both terms in Equation (3) separately, starting with the second term. Consider a fixed
example (x; y) and take the probability inside the expectation with respect to the random choice of g.
It is clear that f(x) = E

g�Q

�

g(x)

�

so the probability inside the expectation is equal to the probability
that the average over N random draws from a distribution over f�1;+1g is larger than its expected
value by more than �=2. The Chernoff bound yields

P

g�Q

�

yg(x) > �=2 j yf(x) � 0
�

� e

�N�

2
=8
: (4)

To upper bound the first term in (3) we use the union bound. That is, the probability over the choice
of S that there exists any g 2 C

N

and � > 0 for which

P

D

�

yg(x) � �=2
�

> P

S

�

yg(x) � �=2
�

+ �

N

7

is at most (N + 1)jC
N

je

�2m�

2
N . The exponential term e

�2m�

2
N comes from the Chernoff bound which

holds for any single choice of g and �. The term (N + 1)jC
N

j is an upper bound on the number of such
choices where we have used the fact that, because of the form of functions in C

N

, we need only consider
values of � of the form 2i=N for i = 0; : : : ; N . Note that jC

N

j � jHj

N .

Thus, if we set �
N

=

q

(1=2m) ln((N + 1)jHjN=�
N

), and take expectation with respect to Q, we
get that, with probability at least 1� �

N

P

D;g�Q

�

yg(x) � �=2
�

� P

S;g�Q

�

yg(x) � �=2
�

+ �

N

(5)

for every choice of �, and every distributionQ.
To finish the argument we relate the fraction of the training set on which yg(x) � �=2 to the fraction

on which yf(x) � �, which is the quantity that we measure. Using Equation (2) again, we have that

P

S;g�Q

�

yg(x) � �=2
�

� P

S;g�Q

�

yf(x) � �

�

+P

S;g�Q

�

yg(x) � �=2; yf(x) > �

�

= P

S

�

yf(x) � �

�

+E

S

�

P

g�Q

�

yg(x) � �=2; yf(x) > �

��

� P

S

�

yf(x) � �

�

+E

S

�

P

g�Q

�

yg(x) � �=2 j yf(x) > �

��

: (6)

To bound the expression inside the expectation we use the Chernoff bound as we did for Equation (4)
and get

P

g�Q

�

yg(x) � �=2 j yf(x) > �

�

� e

�N�

2
=8
: (7)

Let �
N

= �=(N(N + 1)) so that the probability of failure for any N will be at most
P

N�1 �N = �.
Then combining Equations (3), (4), (5), (6) and (7), we get that, with probability at least 1� �, for every
� > 0 and every N � 1:

P

D

�

yf(x) � 0
�

� P

S

�

yf(x) � �

�

+ 2e�N�

2
=8

+

s

1
2m

ln
�

N(N + 1)2
jHj

N

�

�

: (8)

Finally, the statement of the theorem follows by setting N =

�

(4=�2
) ln(m= ln jHj)

�

.

2.2 Discussion of the bound

Let us consider the quantitative predictions that can be made using Theorem 1. It is not hard to show
that if � > 0 and � > 0 are held fixed as m!1 the bound given in Equation (8) with the choice of N
given in the theorem converges to

P

D

�

yf(x) � 0
�

� P

S

�

yf(x) � �

�

+

s

2 lnm ln jHj
m�

2 + o

0

@

s

lnm
m

1

A

: (9)

In fact, if � � 1=2, � = 0:01 (1% probability of failure), jHj � 106 and m � 1000 then the second term
on the right-hand side of Equation (9) is a pretty good approximation of the second and third terms on
the right-hand side of Equation (8), as is demonstrated in Figure 3.

From Equation (9) and from Figure 3 we see that the bounds given here start to be meaningful
only when the size of the training set is in the tens of thousands. As we shall see in Section 4, the
actual performance of AdaBoost is much better than predicted by our bounds; in other words, while our
bounds are not asymptotic (i.e., they hold for any size of the training set), they are still very loose. The
bounds we give in the next section for infinite base-classifier spaces are even looser. It is an important
and challenging open problem to prove tighter bounds.

8

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

bound

10000. 1e+05 1e+06

size of training set

Figure 3: A few plots of the second and third terms in the bound given in Equation (8) (solid lines) and their
approximation by the second term in Equation (9) (dotted lines). The horizontal axis denotes the number of
training examples (with a logarithmic scale) and the vertical axis denotes the value of the bound. All plots are for
� = 0:01 and jHj = 106. Each pair of close lines corresponds to a different value of �; counting the pairs from
the upper right to the lower left, the values of � are 1=20; 1=8; 1=4 and 1=2.

From a practical standpoint, the fact that the bounds we give are so loose suggests that there might
exist criteria different from the one used in Theorem 1 which are better in predicting the performance
of voting classifiers. Breiman [7] and Grove and Schuurmans [23] experimented with maximizing the
minimal margin, that is, the smallest margin achieved on the training set. The advantage of using this
criterion is that maximizing the minimal margin can be done efficiently (if the set of base classifiers
is not too large) using linear programming. Unfortunately, their experiments indicate that altering
the combined classifier generated by AdaBoost so as to maximize the minimal margin increases the
generalization error more often than not. In one experiment reported by Breiman, the generalization
error increases even though the margins of all of the instances are increased (for this dataset, called
“ionosphere,” the number of instances is 351, much too small for our bounds to apply). While none of
these experiments contradict the theory, they highlight the incompleteness of the theory and the need to
refine it.

2.3 Infinite base-classifier spaces

Theorem 2 Let D be a distribution over X � f�1; 1g, and let S be a sample of m examples chosen

9

independently at random according to D. Suppose the base-classifier space H has VC-dimension d,
and let � > 0. Assume that m � d � 1. Then with probability at least 1� � over the random choice of
the training set S, every weighted average function f 2 C satisfies the following bound for all � > 0:

P
D

�

yf(x) � 0
�

� P
S

�

yf(x) � �

�

+O

0

@

1
p

m

d log2
(m=d)

�

2 + log(1=�)

!1=2
1

A

:

The proof of this theorem uses the following uniform convergence result, which is a refinement of
the Vapnik and Chervonenkis result due to Devroye [11]. Let A be a class of subsets of a space Z, and
define

s(A; m) = max fjfA \ S : A 2 Agj : S � Z; jSj = mg :

Lemma 3 (Devroye) For any class A of subsets of Z, and for a sample S of m examples chosen
independently at random according to a distributionD over Z, we have

P
S�D

m

"

sup
A2A

jP
z�S

[z 2 A] � P
z�D

[z 2 A]j > �

#

� 4e8
s(A; m

2
) exp(�2m�

2
):

In other words, the lemma bounds the probability of a significant deviation between the empirical and
true probabilities of any of the events in the familyA.
Proof: (of Theorem 2) The proof proceeds in the same way as that of Theorem 1, until we come to
upper bound the first term in (3). Rather than the union bound, we use Lemma 3.

Define
A = ff(x; y) 2 X � f�1; 1g : yg(x) > �=2g : g 2 C

N

; � > 0g :

Let x1; : : : ; xm 2 X and y1; : : : ; ym 2 f�1; 1g. Since the VC-dimension of H is d, Sauer’s
lemma [33, 41] states that

jfhh(x1); : : : ; h(xm)i : h 2 Hgj �
d

X

i=0

m

i

!

�

�

em

d

�

d

for m � d � 1. This implies that

jfhy1g(x1); : : : ; ymg(xm)i : g 2 C
N

gj �

�

em

d

�

dN

since each g 2 C

N

is composed of N functions from H. Since we need only consider N + 1 distinct
values of �, it follows that s(A; m) � (N + 1)(em=d)

dN . We can now apply Lemma 3 to bound the
probability inside the expectation in the first term of (3). Setting

�

N

=

s

1
2m

�

dN ln
�

em

2

d

�

+ ln
�

4e8
(N + 1)
�

N

��

and taking expectation with respect to Q, we get that, with probability at least 1� �

N

, (5) holds for all
�. Proceeding as in the proof of Theorem 1, we get that, with probability at least 1 � �, for all � > 0
and N � 1,

P

D

�

yf(x) � 0
�

� P

S

�

yf(x) � �

�

+ 2e�N�

2
=8

+

s

1
2m

�

dN ln
�

em

2

d

�

+ ln
4e8

N(N + 1)2

�

�

:

Setting N =

�

(4=�2
) ln(m=d)

�

completes the proof.

10

2.4 Sketch of a more general approach

Instead of the proof above, we can use a more general approach which can also be applied to any class
of real-valued functions. The use of an approximating class, such as C

N

in the proofs of Theorems 1
and 2, is central to our approach. We refer to such an approximating class as a sloppy cover. More
formally, for a class F of real-valued functions, a training set S of size m, and positive real numbers
� and �, we say that a function class F̂ is an �-sloppy �-cover of F with respect to S if, for all f in
F , there exists f̂ in F̂ with P

x�S

h

jf̂(x)� f(x)j > �

i

< �. Let N (F ; �; �;m) denote the maximum,
over all training sets S of size m, of the size of the smallest �-sloppy �-cover of F with respect to S.
Standard techniques yield the following theorem (the proof is essentially identical to that of Theorem 2
in Bartlett [2]).

Theorem 4 Let F be a class of real-valued functions defined on the instance space X . Let D be a
distribution over X � f�1; 1g, and let S be a sample of m examples chosen independently at random
according to D. Let � > 0 and let � > 0. Then the probability over the random choice of the training
set S that there exists any function f 2 F for which

P
D

�

yf(x) � 0
�

> P
S

�

yf(x) � �

�

+ �

is at most
2N (F ; �=2; �=8; 2m) exp(��2

m=32):

Theorem 2 can now be proved by constructing a sloppy cover using the same probabilistic argument
as in the proof of Theorems 1 and 2, i.e., by choosing an element of C

N

randomly by sampling functions
from H. In addition, this result leads to a slight improvement (by log factors) of the main result of
Bartlett [2], which gives bounds on generalization error for neural networks with real outputs in terms
of the size of the network weights and the margin distribution.

3 The Effect of Boosting on Margin Distributions

We now give theoretical evidence that Freund and Schapire’s [20] AdaBoost algorithm is especially
suited to the task of maximizing the number of training examples with large margin.

We briefly review their algorithm. We adopt the notation used in the previous section, and restrict
our attention to the binary case.

Boosting works by sequentially rerunning a base learning algorithm, each time using a different
distribution over training examples. That is, on each round t = 1; : : : ; T , a distributionD

t

is computed
over the training examples, or, formally, over the set of indices f1; : : : ; mg. The goal of the base learning
algorithm then is to find a classifier h

t

with small error �
t

= P

i�D

t

�

y

i

6= h

t

(x

i

)

�

. The distribution used
by AdaBoost is initially uniform (D1(i) = 1=m), and then is updated multiplicatively on each round:

D

t+1(i) =
D

t

(i) exp(�y
i

�

t

h

t

(x

i

))

Z

t

:

Here, �
t

=

1
2 ln((1� �

t

)=�

t

) and Z
t

is a normalization factor chosen so that D
t+1 sums to one. In our

case, Z
t

can be computed exactly:

Z

t

=

m

X

i=1

D

t

(i) exp(�y
i

�

t

h

t

(x

i

))

11

=

X

i:y
i

=h

t

(x

i

)

D

t

(i)e

��

t

+

X

i:y
i

6=h

t

(x

i

)

D

t

(i)e

�

t

= (1� �

t

)e

��

t

+ �

t

e

�

t

= 2
q

�

t

(1� �

t

):

The final combined classifier is a weighted majority vote of the base classifiers, namely, sign(f)
where

f(x) =

T

X

t=1

�

t

h

t

(x)

T

X

t=1

�

t

: (10)

Note that, on round t, AdaBoost places the most weight on examples (x; y) for which y
P

t�1
t

0

=1 �t0ht0(x)

is smallest. This quantity is exactly the margin of the combined classifier computed up to this point.
Freund and Schapire [20] prove that if the training error rates of all the base classifiers are bounded

below 1=2 for all D
t

so that �
t

� 1=2 � for some > 0, then the training error of the combined
classifier decreases exponentially fast with the number of base classifiers that are combined. The training
error is equal to the fraction of training examples for which yf(x) � 0. It is a simple matter to extend
their proof to show that, under the same conditions on �

t

, if � is not too large, then the fraction of
training examples for which yf(x) � � also decreases to zero exponentially fast with the number of
base classifiers (or boosting iterations).

Theorem 5 Suppose the base learning algorithm, when called by AdaBoost, generates classifiers with
weighted training errors �1; : : : ; �T . Then for any �, we have that

P
(x;y)�S

�

yf(x) � �

�

� 2T
T

Y

t=1

q

�

1��
t

(1� �

t

)

1+�
: (11)

Proof: Note that if yf(x) � � then

y

T

X

t=1

�

t

h

t

(x) � �

T

X

t=1

�

t

and so

exp

�y

T

X

t=1

�

t

h

t

(x) + �

T

X

t=1

�

t

!

� 1:

Therefore,

P

(x;y)�S

�

yf(x) � �

�

� E

(x;y)�S

"

exp

�y

T

X

t=1

�

t

h

t

(x) + �

T

X

t=1

�

t

!#

=

exp
�

�

P

T

t=1 �t

�

m

m

X

i=1

exp

�y

i

T

X

t=1

�

t

h

t

(x

i

)

!

= exp

�

T

X

t=1

�

t

!

T

Y

t=1

Z

t

!

m

X

i=1

D

T+1(i)

12

C4.5
Boosting Bagging ECOC

letter

er
ro

r
(%

)

10 100 1000
0
5

10
15
20
25
30
35
40

10 100 1000
0
5

10
15
20
25
30
35
40

10 100 1000
0
5

10
15
20
25
30
35
40

classifiers

cu
m

ul
at

iv
e

di
st

ri
bu

tio
n

-1 -0.5 0.5 1

0.5

1.0

-1 -0.5 0.5 1

0.5

1.0

-1 -0.5 0.5 1

0.5

1.0

margin

satimage

er
ro

r
(%

)

10 100 1000
0
5

10
15
20
25
30
35
40

10 100 1000
0
5

10
15
20
25
30
35
40

10 100 1000
0
5

10
15
20
25
30
35
40

classifiers

cu
m

ul
at

iv
e

di
st

ri
bu

tio
n

-1 -0.5 0.5 1

0.5

1.0

-1 -0.5 0.5 1

0.5

1.0

-1 -0.5 0.5 1

0.5

1.0

margin

vehicle

er
ro

r
(%

)

10 100 1000
0
5

10
15
20
25
30
35
40

10 100 1000
0
5

10
15
20
25
30
35
40

10 100 1000
0
5

10
15
20
25
30
35
40

classifiers

cu
m

ul
at

iv
e

di
st

ri
bu

tio
n

-1 -0.5 0.5 1

0.5

1.0

-1 -0.5 0.5 1

0.5

1.0

-1 -0.5 0.5 1

0.5

1.0

margin

Figure 4: Error curves and margin distribution graphs for three voting methods (bagging, boosting and ECOC)
using C4.5 as the base learning algorithm. Results are given for the letter, satimage and vehicle datasets. (See
caption under Figure 1 for an explanation of these curves.)

13

decision stumps
Boosting Bagging ECOC

letter

er
ro

r
(%

)

10 100 1000
0

20

40

60

80

100

10 100 1000
0

20

40

60

80

100

10 100 1000
0

20

40

60

80

100

classifiers

cu
m

ul
at

iv
e

di
st

ri
bu

tio
n

-1 -0.5 0.5 1

0.5

1.0

-1 -0.5 0.5 1

0.5

1.0

-1 -0.5 0.5 1

0.5

1.0

margin

satimage

er
ro

r
(%

)

10 100 1000
0

20

40

60

80

100

10 100 1000
0

20

40

60

80

100

10 100 1000
0

20

40

60

80

100

classifiers

cu
m

ul
at

iv
e

di
st

ri
bu

tio
n

-1 -0.5 0.5 1

0.5

1.0

-1 -0.5 0.5 1

0.5

1.0

-1 -0.5 0.5 1

0.5

1.0

margin

vehicle

er
ro

r
(%

)

10 100 1000
0

20

40

60

80

100

10 100 1000
0

20

40

60

80

100

10 100 1000
0

20

40

60

80

100

classifiers

cu
m

ul
at

iv
e

di
st

ri
bu

tio
n

-1 -0.5 0.5 1

0.5

1.0

-1 -0.5 0.5 1

0.5

1.0

-1 -0.5 0.5 1

0.5

1.0

margin

Figure 5: Error curves and margin distribution graphs for three voting methods (bagging, boosting and ECOC)
using decision stumps as the base learning algorithm. Results are given for the letter, satimage and vehicle datasets.
(See caption under Figure 1 for an explanation of these curves.)

14

where the last equality follows from the definition of D
T+1. Noting that

P

m

i=1 DT+1(i) = 1, and
plugging in the values of �

t

and Z
t

gives the theorem.

To understand the significance of the result, assume for a moment that, for all t, �
t

� 1=2� for
some > 0. Since here we are considering only two-class prediction problems, a random prediction
will be correct exactly half of the time. Thus, the condition that �

t

� 1=2� for some small positive
 means that the predictions of the base classifiers are slightly better than random guessing. Given this
assumption, we can simplify the upper bound in Equation (11) to:

�

q

(1� 2)1��
(1 + 2)1+�

�

T

:

If � < , it can be shown that the expression inside the parentheses is smaller than 1 so that the
probability that yf(x) � � decreases exponentially fast with T .4 In practice, �

t

increases as a function
of t, possibly even converging to 1=2. However, if this increase is sufficiently slow the bound of
Theorem 5 is still useful. Characterizing the conditions under which the increase is slow is an open
problem.

Although this theorem applies only to binary classification problems, Freund and Schapire [20] and
others [35, 36] give extensive treatment to the multiclass case (see also Section 4). All of their results
can be extended to prove analogous theorems about margin distributions for this more general case.

4 More Margin Distribution Graphs

In this section, we describe experiments we conducted to produce a series of error curves and margin
distribution graphs for a variety of datasets and learning methods.

Datasets. We used three benchmark datasets called “letter,” “satimage” and “vehicle.” Brief descrip-
tions of these are given in Appendix B. Note that all three of these learning problems are multiclass
with 26, 6 and 4 classes, respectively.

Voting methods. In addition to bagging and boosting, we used a variant of Dietterich and Bakiri’s [13]
method of error-correcting output codes (ECOC), which can be viewed as a voting method. This
approach was designed to handle multiclass problems using only a two-class learning algorithm. Briefly,
it works as follows: As in bagging and boosting, a given base learning algorithm (which need only
be designed for two-class problems) is rerun repeatedly. However, unlike bagging and boosting, the
examples are not reweighted or resampled. Instead, on each round, the labels assigned to each example
are modified so as to create a new two-class labeling of the data which is induced by a simple mapping
from the set of classes into f�1;+1g. The base learning algorithm is then trained using this relabeled
data, generating a base classifier.

The sequence of bit assignments for each of the individual labels can be viewed as a “code word.”
A given test example is then classified by choosing the label whose associated code word is closest in
Hamming distance to the sequence of predictions generated by the base classifiers. This coding-theoretic
interpretation led Dietterich and Bakiri to the idea of choosing code words with strong error-correcting
properties so that they will be as far apart from one another as possible. However, in our experiments,
rather than carefully constructing error-correcting codes, we simply used random output codes which
are highly likely to have similar properties.

4We can show that if is known in advance then an exponential decrease in the probability can be achieved (by a slightly
different boosting algorithm) for any � < 2. However, we don’t know how to achieve this improvement when no nontrivial
lower bound on 1=2 � �

t

is known a priori.

15

The ECOC combination rule can also be viewed as a voting method: Each base classifier h
t

, on a
given instance x, predicts a single bit h

t

(x) 2 f�1;+1g. We can interpret this bit as a single vote for
each of the labels which were mapped on round t to h

t

(x). The combined hypothesis then predicts with
the label receiving the most votes overall. Since ECOC is a voting method, we can measure margins
just as we do for boosting and bagging.

As noted above, we used three multiclass learning problems in our experiments, whereas the version
of boosting given in Section 3 only handles two-class data. Freund and Schapire [20] describe a
straightforward adaption of this algorithm to the multiclass case. The problem with this algorithm is
that it still requires that the accuracy of each base classifier exceed 1=2. For two-class problems, this
requirement is about as minimal as can be hoped for since random guessing will achieve accuracy 1=2.
However, for multiclass problems in which k > 2 labels are possible, accuracy 1=2 may be much
harder to achieve than the random-guessing accuracy rate of 1=k. For fairly powerful base learners,
such as C4.5, this does not seem to be a problem. However, the accuracy 1=2 requirement can often
be difficult for less powerful base learning algorithms which may be unable to generate classifiers with
small training errors.

Freund and Schapire [20] provide one solution to this problem by modifying the form of the base
classifiers and refining the goal of the base learner. In this approach, rather than predicting a single class
for each example, the base classifier chooses a set of “plausible” labels for each example. For instance,
in a character recognition task, the base classifier might predict that a particular example is either a “6,”
“8” or “9,” rather than choosing just a single label. Such a base classifier is then evaluated using a
“pseudoloss” measure which, for a given example, penalizes the base classifier (1) for failing to include
the correct label in the predicted plausible label set, and (2) for each incorrect label which is included
in the plausible set. The combined classifier, for a given example, then chooses the single label which
occurs most frequently in the plausible label sets chosen by the base classifiers (possibly giving more
or less weight to some of the base classifiers). The exact form of the pseudoloss is under the control of
the boosting algorithm, and the base learning algorithm must therefore be designed to handle changes
in the form of the loss measure.

Base learning algorithms. In our experiments, for the base learning algorithm, we used C4.5. We
also used a simple algorithm for finding the best single-node, binary-split decision tree (a decision
“stump”). Since this latter algorithm is very weak, we used the “pseudoloss” versions of boosting and
bagging, as described above. (See Freund and Schapire [20, 18] for details.)

Results. Figures 4 and 5 show error curves and margin distribution graphs for the three datasets, three
voting methods and two base learning algorithms. Note that each figure corresponds only to a single
run of each algorithm.

As explained in the introduction, each of the learning curve figures shows the training error (bottom)
and test error (top) curves. We have also indicated as horizontal grid lines the error rate of the base
classifier when run just once, as well as the error rate of the combined classifier after 1000 iterations. Note
the log scale used in these figures. Margin distribution graphs are shown for 5, 100 and 1000 iterations
indicated by short-dashed, long-dashed (sometimes barely visible) and solid curves, respectively.

It is interesting that, across datasets, all of the learning algorithms tend to produce margin distribution
graphs of roughly the same character. As already noted, when used with C4.5, boosting is especially
aggressive at increasing the margins of the examples, so much so that it is “willing” to suffer significant
reductions in the margins of those examples that already have large margins. This can be seen in
Figure 4, where we observe that the maximal margin in the final classifier is bounded well away from
1. Contrast this with the margin distribution graphs after 1000 iterations of bagging in which as many

16

Kong & Dietterich [26] definitions Breiman [8] definitions
stumps C4.5 stumps C4.5

error pseudoloss error error pseudoloss error
name – boost bag boost bag – boost bag – boost bag boost bag – boost bag
waveform bias 26.0 3.8 22.8 0.8 11.9 1.5 0.5 1.4 19.2 2.6 15.7 0.5 7.9 0.9 0.3 1.4

var 5.6 2.8 4.1 3.8 8.6 14.9 3.7 5.2 12.5 4.0 11.2 4.1 12.5 15.5 3.9 5.2
error 44.7 19.6 39.9 17.7 33.5 29.4 17.2 19.7 44.7 19.6 39.9 17.7 33.5 29.4 17.2 19.7

twonorm bias 2.5 0.6 2.0 0.5 0.2 0.5 1.3 0.3 1.1 0.3 0.1 0.3
var 28.5 2.3 17.3 18.7 1.8 5.4 29.6 2.6 18.2 19.0 1.9 5.6
error 33.3 5.3 21.7 21.6 4.4 8.3 33.3 5.3 21.7 21.6 4.4 8.3

threenorm bias 24.5 6.3 21.6 4.7 2.9 5.0 14.2 4.1 13.8 2.6 1.9 3.1
var 6.9 5.1 4.8 16.7 5.2 6.8 17.2 7.3 12.6 18.8 6.3 8.6
error 41.9 22.0 36.9 31.9 18.6 22.3 41.9 22.0 36.9 31.9 18.6 22.3

ringnorm bias 46.9 4.1 46.9 2.0 0.7 1.7 32.3 2.7 37.6 1.1 0.4 1.1
var –7.9 6.6 –7.1 15.5 2.3 6.3 6.7 8.0 2.2 16.4 2.6 6.9
error 40.6 12.2 41.4 19.0 4.5 9.5 40.6 12.2 41.4 19.0 4.5 9.5

Kong & bias 49.2 49.1 49.2 7.7 35.1 7.7 5.5 8.9 49.0 49.0 49.0 5.3 29.7 5.1 3.5 6.2
Dietterich var 0.2 0.2 0.2 5.1 3.5 7.2 6.6 4.3 0.4 0.3 0.5 7.5 8.9 9.8 8.5 6.9

error 49.5 49.3 49.5 12.8 38.6 14.9 12.1 13.1 49.5 49.3 49.5 12.8 38.6 14.9 12.1 13.1

Table 1: Results of bias-variance experiments using boosting and bagging on five synthetic datasets (described
in Appendix B). For each dataset and each learning method, we estimated bias, variance and generalization
error rate, reported in percent, using two sets of definitions for bias and variance (given in Appendix C). Both
C4.5 and decision stumps were used as base learning algorithms. For stumps, we used both error-based and
pseudoloss-based versions of boosting and bagging on problems with more than two classes. Columns labeled
with a dash indicate that the base learning algorithm was run by itself.

as half of the examples have a margin of 1.
The graphs for ECOC with C4.5 resemble in shape those for boosting more so than bagging, but

tend to have overall lower margins.
Note that, on every dataset, both boosting and bagging eventually achieve perfect or nearly perfect

accuracy on the training sets (at least 99%), but the generalization error for boosting is better. The
explanation for this is evident from the margin distribution graphs where we see that, for boosting, far
fewer training examples have margin close to zero.

It should be borne in mind that, when combining decision trees, the complexity of the trees (as
measured, say, by the number of leaves), may vary greatly from one combination method to another.
As a result, the margin distribution graphs may not necessarily predict which method gives better
generalization error. One must also always consider the complexity of the base classifiers, as explicitly
indicated by Theorems 1 and 2.

When used with stumps, boosting can achieve training error much smaller than that of the base
learner; however it is unable to achieve large margins. This is because, consistent with Theorem 5, the
base classifiers have much higher training errors. Presumably, such low margins do not adversely affect
the generalization error because the complexity of decision stumps is so much smaller than that of full
decision trees.

5 Relation to Bias-variance Theory

One of the main explanations for the improvements achieved by voting classifiers is based on separating
the expected error of a classifier into a bias term and a variance term. While the details of these
definitions differ from author to author [8, 25, 26, 40], they are all attempts to capture the following
quantities: The bias term measures the persistent error of the learning algorithm, in other words, the
error that would remain even if we had an infinite number of independently trained classifiers. The
variance term measures the error that is due to fluctuations that are a part of generating a single classifier.

17

The idea is that by averaging over many classifiers one can reduce the variance term and in that way
reduce the expected error.

In this section, we discuss a few of the strengths and weaknesses of bias-variance theory as an
explanation for the performance of voting methods, especially boosting.

5.1 The bias-variance decomposition for classification.

The origins of bias-variance analysis are in quadratic regression. Averaging several independently
trained regression functions will never increase the expected error. This encouraging fact is nicely
reflected in the bias-variance separation of the expected quadratic error. Both bias and variance are
always nonnegative and averaging decreases the variance term without changing the bias term.

One would naturally hope that this beautiful analysis would carry over from quadratic regression to
classification. Unfortunately, as has been observed before us, (see, for instance, Friedman [22]) taking
the majority vote over several classification rules can sometimes result in an increase in the expected
classification error. This simple observation suggests that it may be inherently more difficult or even
impossible to find a bias-variance decomposition for classification as natural and satisfying as in the
quadratic regression case.

This difficulty is reflected in the myriad definitions that have been proposed for bias and variance [8,
25, 26, 40]. Rather than discussing each one separately, for the remainder of this section, except where
noted, we follow the definitions given by Kong and Dietterich [26], and referred to as “Definition 0” by
Breiman [8]. (These definitions are given in Appendix C.)

5.2 Bagging and variance reduction.

The notion of variance certainly seems to be helpful in understanding bagging; empirically, bagging
appears to be most effective for learning algorithms with large variance. In fact, under idealized
conditions, variance is by definition the amount of decrease in error effected by bagging a large number
of base classifiers. This ideal situation is one in which the bootstrap samples used in bagging faithfully
approximate truly independent samples. However, this assumption can fail to hold in practice, in which
case, bagging may not perform as well as expected, even when variance dominates the error of the base
learning algorithm.

This can happen even when the data distribution is very simple. As a somewhat contrived example,
consider data generated according to the following distribution. The label y 2 f�1;+1g is chosen
uniformly at random. The instance x 2 f�1;+1g7 is then chosen by picking each of the 7 bits to be
equal to y with probability 0:9 and�y with probability 0:1. Thus, each coordinate ofx is an independent
noisy version of y. For our base learner, we use a learning algorithm which generates a classifier that is
equal to the single coordinate of x which is the best predictor of y with respect to the training set. It is
clear that each coordinate of x has the same probability of being chosen as the classifier on a random
training set, so the aggregate predictor over many independently trained samples is the unweighted
majority vote over the coordinates of x, which is also the Bayes optimal predictor in this case. Thus, the
bias of our learning algorithm is exactly zero. The prediction error of the majority rule is roughly 0:3%,
and so a variance of about 9:7% strongly dominates the expected error rate of 10%. In such a favorable
case, one would predict, according to the bias-variance explanation, that bagging could get close to the
error of the Bayes optimal predictor.

However, using a training set of 500 examples, the generalization error achieved by bagging is 5:6%
after 200 iterations. (All results are averaged over many runs.) The reason for this poor performance
is that, in any particular random sample, some of the coordinates of x are slightly more correlated with

18

y and bagging tends to pick these coordinates much more often than the others. Thus, in this case, the
behavior of bagging is very different from its expected behavior on truly independent training sets.

Boosting, on the same data, achieved a test error of 0:6%.

5.3 Boosting and variance reduction.

Breiman [8] argued that boosting is primarily a variance-reducing procedure. Some of the evidence
for this comes from the observed effectiveness of boosting when used with C4.5 or CART, algorithms
known empirically to have high variance. As the error of these algorithms is mostly due to variance, it
is not surprising that the reduction in the error is primarily due to a reduction in the variance. However,
our experiments show that boosting can also be highly effective when used with learning algorithms
whose error tends to be dominated by bias rather than variance.5

We ran boosting and bagging on four artificial datasets described by Breiman [8], as well as the
artificial problem studied by Kong and Dietterich [26]. Following previous authors, we used training sets
of size 200 for the latter problem and 300 for the others. For the base learning algorithm, we tested C4.5.
We also used the decision-stump base-learning algorithm described in Section 4. We then estimated
bias, variance and average error of these algorithms by rerunning them 1000 times each, and evaluating
them on a test set of 10,000 examples. For these experiments, we used both the bias-variance definitions
given by Kong and Dietterich [26] and those proposed more recently by Breiman [8]. (Definitions are
given in Appendix C.) For multiclass problems, following Freund and Schapire [18], we tested both
error-based and pseudoloss-based versions of bagging and boosting. For two-class problems, only the
error-based versions were used.

The results are summarized in Table 1. Clearly, boosting is doing more than reducing variance. For
instance, on “ringnorm,” boosting decreases the overall error of the stump algorithm from 40:6% to
12:2%, but actually increases the variance from�7:9% to 6.6% using Kong and Dietterich’s definitions,
or from 6.7% to 8.0% using Breiman’s definitions. (We did not check the statistical significance of this
increase.)

Breiman also tested boosting with a low-variance base learning algorithm—namely, linear discrim-
inant analysis (LDA)—and attributed the ineffectiveness of boosting in this case to the “stability” (low
variance) of LDA. The experiments with the fairly stable stump algorithm suggest that stability in itself
may not be sufficient to predict boosting’s failure.

Our theory suggests a different characterization of the cases in which boosting might fail. Taken
together, Theorem 1 and Theorem 5 state that boosting can perform poorly only when either (1) there is
insufficient training data relative to the “complexity” of the base classifiers, or (2) the training errors of the
base classifiers (the �

t

’s in Theorem 5) become too large too quickly. Certainly, this characterization is
incomplete in that boosting often succeeds even in situations in which the theory provides no guarantees.
However, while we hope that tighter bounds can be given, it seems unlikely that there exists a “perfect”
theory. By a “perfect” theory we mean here a rigorous analysis of voting methods that, on the one hand,
is general enough to apply to any base learning algorithm and to any i.i.d. source of labeled instances
and on the other hand gives bounds that are accurate predictors of the performance of the algorithm in
practice. This is because in any practical situation there is structure in the data and in the base learning
algorithm that is not taken into account in the assumptions of a general theory.

5In fact, the original goal of boosting was to reduce the error of so-called “weak” learning algorithms which tend to have
very large bias. [17, 20, 34]

19

5.4 Why averaging can increase complexity

In this section, we challenge a common intuition which says that when one takes the majority vote
over several base classifiers the generalization error of the resulting classifier is likely to be lower than
the average generalization error of the base classifiers. In this view, voting is seen as a method for
“smoothing” or “averaging” the classification rule. This intuition is sometimes based on the bias-
variance analysis of regression described in the previous section. Also, to some, it seems to follow from
a Bayesian point of view according to which integrating the classifications over the posterior is better
than using any single classifier. If one feels comfortable with these intuitions, there seems to be little
point to most of the analysis given in this paper. It seems that because AdaBoost generates a majority
vote over several classifiers, its generalization error is, in general, likely to be better than the average
generalization error of the base classifiers. According to this point of view, the suggestion we make in
the introduction that the majority vote over many classifiers is more complex than any single classifier
seems to be irrelevant and misled.

In this section, we describe a base learning algorithm which, when combined using AdaBoost, is
likely to generate a majority vote over base classifiers whose training error goes to zero, while at the
same time the generalization error does not improve at all. In other words, it is a case in which voting
results in over-fitting. This is a case in which the intuition described above seems to break down, while
the margin-based analysis developed in this paper gives the correct answer.

Suppose we use classifiers that are delta-functions, i.e., they predict +1 on a single point in the input
space and �1 everywhere else, or vice versa (�1 on one point and +1 elsewhere). (If you dislike delta-
functions, you can replace them with nicer functions. For example, if the input space isRn, use balls of
sufficiently small radius and make the prediction +1 or�1 inside, and�1 or +1, respectively, outside.)
To this class of functions we add the constant functions that are �1 everywhere or +1 everywhere.

Now, for any training sample of size m we can easily construct a set of at most 2m functions from
our class such that the majority vote over these functions will always be correct. To do this, we associate
one delta function with each training example; the delta function gives the correct value on the training
example and the opposite value everywhere else. Letting m

+

and m

�

denote the number of positive
and negative examples, we next add m

+

copies of the function which predicts +1 everywhere, and m
�

copies of the function which predicts�1 everywhere. It can now be verified that the sum (majority vote)
of all these functions will be positive on all of the positive examples in the training set, and negative on
all the negative examples. In other words, we have constructed a combined classifier which exactly fits
the training set.

Fitting the training set seems like a good thing; however, the very fact that we can easily fit such a
rule to any training set implies that we don’t expect the rule to be very good on independently drawn
points outside of the training set. In other words, the complexity of these average rules is too large,
relative to the size of the sample, to make them useful. Note that this complexity is the result of
averaging. Each one of the delta rules is very simple (the VC-dimension of this class of functions is
exactly 2), and indeed, if we found a single delta function (or constant function) that fit a large sample
we could, with high confidence, expect the rule to be correct on new randomly drawn examples.

How would boosting perform in this case? It can be shown using Theorem 5 (with � = 0) that
boosting would slowly but surely find a combination of the type described above having zero training
error but very bad generalization error. A margin-based analysis of this example shows that while all
of the classifications are correct, they are correct only with a tiny margin of size O(1=m), and so we
cannot expect the generalization error to be very good.

20

h

h(x)High dimensional spaceInput space R

θ
−

+

− − −

−
−

+
++

+
+

−

−

−

−−

−

++
+

+++

+

+
−

α

Figure 6: The maximal margins classification method. In this example, the raw data point x is an element of R,
but in that space the positive and negative examples are not linearly separable. The raw input is mapped to a point
in a high dimensional space (here R2) by a fixed nonlinear transformation ~

h. In the high dimensional space, the
classes are linearly separable. The vector ~� is chosen to maximize the minimal margin �. The circled instances
are the support vectors; Vapnik shows that ~� can always be written as a linear combination of the support vectors.

6 Relation to Vapnik’s Maximal Margin Classifiers

The use of the margins of real-valued classifiers to predict generalization error was previously studied
by Vapnik [42] in his work with Boser and Guyon [5] and Cortes [10] on optimal margin classifiers.

We start with a brief overview of optimal margin classifiers. One of the main ideas behind this
method is that some nonlinear classifiers on a low dimensional space can be treated as linear classifiers
over a high dimensional space. For example, consider the classifier that labels an instance x 2 R as
+1 if 2x5

� 5x2
+ x > 10 and �1 otherwise. This classifier can be seen as a linear classifier if we

represent each instance by the vector ~h(x) :

= (1; x; x2
; x

3
; x

4
; x

5
). If we set ~� = (�10; 1;�5; 0; 0; 2)

then the classification is +1 when ~� �

~

h(x) > 0 and �1 otherwise. In a typical case, the data consists
of about 10; 000 instances in R100 which are mapped into R1;000;000. Vapnik introduced the method
of kernels which provides an efficient way for calculating the predictions of linear classifiers in the
high dimensional space. Using kernels, it is usually easy to find a linear classifier that separates the
data perfectly. In fact, it is likely that there are many perfect linear classifiers, many of which might
have very poor generalization ability. In order to overcome this problem, the prescription suggested by
Vapnik is to find the classifier that maximizes the minimal margin. More precisely, suppose that the
training sample S consists of pairs of the form (x; y) where x is the instance and y 2 f�1;+1g is its
label. Assume that ~h(x) is some fixed nonlinear mapping of instances into Rn (where n is typically
very large). Then the maximal margin classifier is defined by the vector ~� which maximizes

min
(x;y)2S

y(~� �

~

h(x))

jj~�jj2
: (12)

Here, jj~�jj2 is the l2 or Euclidean norm of the vector ~�. A graphical sketch of the maximal margin
method is given in Figure 6. For the analysis of this method, Vapnik assumes that all of the vectors ~h(x)
are enclosed within a ball of radius R, i.e., they all are within Euclidean distance R from some fixed
vector in Rn. Without loss of generality, we can assume that R = 1.

21

Vapnik [42] showed that the VC dimension of all linear classifiers with minimum margin at least � is
upper bounded by 1=�2. This result implies bounds on the generalization error in terms of the expected
minimal margin on test points which do not depend on the dimension n of the space into which the
data are mapped. However, typically, the expected value of the minimal margin is not known. Shawe-
Taylor et al. [38] used techniques from the theory of learning real-valued functions to give bounds on
generalization error in terms of margins on the training examples. Shawe-Taylor et al. [39] also gave
related results for arbitrary real classes.

Consider the relation between Equation (10) and the argument of the minimum in Equation (12). We
can view the coefficients f�

t

g

T

t=1 as the coordinates of a vector ~� 2 RT and the predictions fh
t

(x)g

T

t=1

as the coordinates of the vector ~h(x) 2 f�1;+1gT . Then we can rewrite Equation (10) as

f(x) =

~� �

~

h(x)

k~�k1
;

where jj~�jj1 =

P

T

t=1 j�tj is the l1 norm of ~�. In our analysis, we use the fact that all of the components
of ~h(x) are in the range [�1;+1], or, in other words that the max or l

1

norm of ~h(x) is bounded by 1:
k

~

h(x)k

1

= maxT
t=1 jht(x)j � 1.

Viewed this way, the connection between maximal margin classifiers and boosting becomes clear.
Both methods aim to find a linear combination in a high dimensional space which has a large margin on
the instances in the sample. The norms used to define the margin are different in the two cases and the
precise goal is also different—maximal margin classifiers aim to maximize the minimal margin while
boosting aims to minimize an exponential weighting of the examples as a function of their margins.
Our interpretation for these differences is that boosting is more suited for the case when the mapping
~

h maps x into a high dimensional space where all of the coordinates have a similar maximal range,
such as f�1;+1g. On the other hand, the optimal margin method is suitable for cases in which the
Euclidean norm of~h(x) is likely to be small, such as is the case when~h is an orthonormal transformation
between inner-product spaces. Related to this, the optimal margin method uses quadratic programming
for its optimization, whereas the boosting algorithm can be seen as a method for approximate linear
programming [7, 19, 21, 23].

Both boosting and support vector machines aim to find a linear classifier in a very high dimensional
space. However, computationally, they are very different: support vector machines use the method of
kernels to perform computations in the high dimensional space while boosting relies on a base learning
algorithm which explores the high dimensional space one coordinate at a time.

Vapnik [42] gave an alternative analysis of optimal margin classifiers, based on the number of
support vectors, i.e., the number of examples that define the final classifier. This analysis is preferable
to the analysis that depends on the size of the margin when only a few of the training examples are
support vectors. Previous work [17] has suggested that boosting also can be used as a method for
selecting a small number of “informative” examples from the training set. Investigating the relevance
of this type of bound when applying boosting to real-world problems is an interesting open research
direction.

7 Other loss functions

We describe briefly related work which has been done on loss functions other than the 0-1 loss.
For quadratic loss, Jones [24] and Barron [1] have shown that functions in the convex hull of a class

H of real-valued functions can be approximated by a convex combination of N elements of H to an
accuracy of O(1=N) by iteratively adding the member of H which minimizes the residual error to the
existing convex combination. Lee, Bartlett and Williamson [27] extended this result to show that the

22

procedure will converge to the best approximation in the convex hull ofH even when the target function
is not in the convex hull ofH. Lee, Bartlett and Williamson [27, 28] also studied the generalization error
when this procedure is used for learning. In results analogous to those presented here, they showed that
the generalization error can be bounded in terms of the sum of the absolute values of the output weights
(when the members of H are normalized to have output values in the interval [�1; 1]), rather than in
terms of the number of components in the convex combination.

Similar work on iterative convex approximation in L
p

spaces was presented by Donahue et al. [14].
To the best of our knowledge, similar iterative schemes for combining functions have not been studied
for the log loss.

Extensions of boosting to solve regression problems have been suggested by Freund [17] and Freund
and Schapire [20]. These extensions are yet to be tested in practice. Drucker [15] experimented with a
different extension of boosting for regression and reported some encouraging results.

8 Open Problems

The methods in this paper allow us to upper bound the generalization error of a voted classifier based
on simple statistics which can be measured using the training data. These statistics are a function of the
empirical distribution of the margins. While our bounds seem to explain the experiments qualitatively,
their quantitative predictions are greatly over pessimistic. The challenge of coming up with better
bounds can be divided into two questions. First, can one give better bounds that are a function of the
empirical margins distribution? Second, are there better bounds that are functions of other statistics?

A different approach to understanding the behavior of AdaBoost is to find functions of the training
set which predict the generalization error well on all or most of the datasets encountered in practice.
While this approach does not give one the satisfaction of a mathematical proof, it might yield good
results in practice.

Acknowledgments

Many thanks to Leo Breiman for a poignant email exchange which challenged us to think harder about
these problems. Thanks also to all those who contributed to the datasets used in this paper, and to the
three anonymous reviewers for many helpful criticisms.

References

[1] Andrew R. Barron. Universal approximation bounds for superposition of a sigmoidal function.
IEEE Transactions on Information Theory, 39(3):930–945, 1993.

[2] Peter L. Bartlett. The sample complexity of pattern classification with neural networks: the size
of the weights is more important than the size of the network. IEEE Transactions on Information
Theory, 1998 (to appear).

[3] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algorithms: Bagging,
boosting, and variants. Unpublished manuscript, 1997.

[4] Eric B. Baum and David Haussler. What size net gives valid generalization? Neural Computation,
1(1):151–160, 1989.

[5] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual ACM Workshop on Computational Learning
Theory, pages 144–152, 1992.

[6] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
[7] Leo Breiman. Prediction games and arcing classifiers. Technical Report 504, Statistics Department,

University of California at Berkeley, 1997.

23

[8] Leo Breiman. Arcing classifiers. Annals of Statistics, to appear.
[9] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classification and

Regression Trees. Wadsworth International Group, 1984.
[10] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–

297, September 1995.
[11] Luc Devroye. Bounds for the uniform deviation of empirical measures. Journal of Multivariate

Analysis, 12:72–79, 1982.
[12] Thomas G. Dietterich. An experimental comparison of three methods for constructing ensembles

of decision trees: Bagging, boosting, and randomization. Unpublished manuscript, 1998.
[13] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-

correcting output codes. Journal of Artificial Intelligence Research, 2:263–286, January 1995.
[14] M. J. Donahue, L. Gurvits, C. Darken, and E. Sontag. Rates of convex approximation in non-Hilbert

spaces. Constructive Approximation, 13:187–220, 1997.
[15] Harris Drucker. Improving regressors using boosting techniques. In Machine Learning: Proceed-

ings of the Fourteenth International Conference, pages 107–115, 1997.
[16] Harris Drucker and Corinna Cortes. Boosting decision trees. In Advances in Neural Information

Processing Systems 8, pages 479–485, 1996.
[17] Yoav Freund. Boosting a weak learning algorithm by majority. Information and Computation,

121(2):256–285, 1995.
[18] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In Machine

Learning: Proceedings of the Thirteenth International Conference, pages 148–156, 1996.
[19] Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and boosting. In Proceedings

of the Ninth Annual Conference on Computational Learning Theory, pages 325–332, 1996.
[20] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and

an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, August
1997.

[21] Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, (to appear).

[22] Jerome H. Friedman. On bias, variance, 0/1-loss, and the curse-of-dimensionality. Available
electronically from http://stat.stanford.edu/�jhf.

[23] Adam J. Grove and Dale Schuurmans. Boosting in the limit: Maximizing the margin of learned
ensembles. In Proceedings of the Fifteenth National Conference on Artificial Intelligence, 1998.

[24] Lee K. Jones. A simple lemma on greedy approximation in Hilbert space and convergence rates
for projection pursuit regression and neural network training. Annals of Statistics, 20(1):608–613,
1992.

[25] Ron Kohavi and David H. Wolpert. Bias plus variance decomposition for zero-one loss functions.
In Machine Learning: Proceedings of the Thirteenth International Conference, pages 275–283,
1996.

[26] Eun Bae Kong and Thomas G. Dietterich. Error-correcting output coding corrects bias and
variance. In Proceedings of the Twelfth International Conference on Machine Learning, pages
313–321, 1995.

[27] Wee Sun Lee, Peter L. Bartlett, and Robert C. Williamson. Efficient agnostic learning of neural
networks with bounded fan-in. IEEE Transactions on Information Theory, 42(6):2118–2132,
1996.

[28] Wee Sun Lee, Peter L. Bartlett, and Robert C. Williamson. The importance of convexity in learning
with squared loss. IEEE Transactions on Information Theory, to appear.

24

[29] Richard Maclin and David Opitz. An empirical evaluation of bagging and boosting. In Proceedings
of the Fourteenth National Conference on Artificial Intelligence, pages 546–551, 1997.

[30] C. J. Merz and P. M. Murphy. UCI repository of machine learning databases, 1998.
http://www.ics.uci.edu/�mlearn/MLRepository.html.

[31] J. R. Quinlan. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence, pages 725–730, 1996.

[32] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
[33] N. Sauer. On the density of families of sets. Journal of Combinatorial Theory Series A, 13:145–147,

1972.
[34] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.
[35] Robert E. Schapire. Using output codes to boost multiclass learning problems. In Machine

Learning: Proceedings of the Fourteenth International Conference, pages 313–321, 1997.
[36] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated

predictions. In Proceedings of the Eleventh Annual Conference on Computational Learning
Theory, 1998.

[37] Holger Schwenk and Yoshua Bengio. Training methods for adaptive boosting of neural networks
for character recognition. In Advances in Neural Information Processing Systems 10, 1998.

[38] John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, and Martin Anthony. A framework
for structural risk minimisation. In Proceedings of the Ninth Annual Conference on Computational
Learning Theory, pages 68–76, 1996.

[39] John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, and Martin Anthony. Structural risk
minimization over data-dependent hierarchies. Technical Report NC-TR-96-053, Neurocolt, 1996.

[40] Robert Tibshirani. Bias, variance and prediction error for classification rules. Technical report,
University of Toronto, November 1996.

[41] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability and its applications, XVI(2):264–280, 1971.

[42] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

A Generalization Error for Multiclass Problems

In this appendix, we describe how Theorems 1 and 2 can be extended to multiclass problems.
Suppose there are k classes, and define Y = f1; 2; : : : ; kg as the output space. We formally view

the base classifiers h 2 H as mappings from X�Y to f0; 1g, with the interpretation that if h(x; y) = 1
then y is predicted by h to be a plausible label for x. This general form of classifier covers the forms of
base classifiers used throughout this paper. For simple classifiers, like the decision trees computed by
C4.5, only a single label is predicted so that, for each x, h(x; y) = 1 for exactly one label y. However,
some of the other combination methods — such as pseudoloss-based boosting or bagging, as well as
Dietterich and Bakiri’s output-coding method — use base classifiers which vote for a set of plausible
labels so that h(x; y) may be 1 for several labels y.

We define the convex hull C of H as

C

:

=

8

<

:

f : (x; y) 7!
X

h2H

a

h

h(x; y)

�

�

�

�

�

a

h

� 0;
X

h

a

h

= 1

9

=

;

;

so a classifier f in C predicts label y for input x if f(x; y) > max
y

0

6=y

f(x; y

0

) (and ties are broken
arbitrarily). We define the margin of an example (x; y) for such a function f as

margin(f; x; y) = f(x; y)�max
y

0

6=y

f(x; y

0

): (13)

25

Clearly, f gives the wrong prediction on (x; y) only if margin(f; x; y) � 0. With these definitions, we
have the following generalization of Theorems 1 and 2.

Theorem 6 Let D be a distribution over X � Y , and let S be a sample of m examples chosen
independently at random according to D. Assume that the base-classifier space H is finite, and let
� > 0. Then with probability at least 1� � over the random choice of the training set S, every function
f 2 C satisfies the following bound for all � > 0:

P
D

�

margin(f; x; y) � 0
�

� P
S

�

margin(f; x; y) � �

�

+O

1
p

m

�

log(mk) log jHj
�

2 + log(1=�)
�1=2

!

:

More generally, for finite or infiniteHwith VC-dimensiond, the following bound holds as well, assuming
that m � d � 1:

P
D

�

margin(f; x; y) � 0
�

� P
S

�

margin(f; x; y) � �

�

+O

0

@

1
p

m

d log2
(mk=d)

�

2 + log(1=�)

!1=2
1

A

:

Proof: The proof closely follows that of Theorem 1, so we only describe the differences. We first
consider the case of finite H.

First, we define

C

N

:

=

(

f : (x; y) 7!
1
N

N

X

i=1

h

i

(x; y)

�

�

�

�

�

h

i

2 H

)

:

As in the proof of Theorem 1, for any f 2 C we choose an approximating function g 2 C
N

according
to the distributionQ, and we have

P

D

�

margin(f; x; y)� 0
�

� E

g�Q

�

P

D

�

margin(g; x; y)� �=2
��

+E

D

�

P

g�Q

�

margin(g; x; y)> �=2 j margin(f; x; y) � 0
��

:

We bound the second term of the right hand side as follows: Fix f , x and y, and let y0 6= y achieve the
maximum in Equation (13) so that

margin(f; x; y) = f(x; y)� f(x; y

0

):

Clearly, margin(g; x; y)� g(x; y)� g(x; y

0

) and

E

g�Q

�

g(x; y)� g(x; y

0

)

�

= f(x; y)� f(x; y

0

)

so

P

g�Q

�

margin(g; x; y)> �=2 j margin(f; x; y) � 0
�

� P

g�Q

�

g(x; y)� g(x; y

0

) > �=2 j f(x; y)� f(x; y

0

) � 0
�

� e

�N�

2
=8

using the Chernoff bound.

26

Equations (5) and (6) follow exactly as in the proof of Theorem 1 with yf(x) and yg(x) replaced
by margin(f; x; y) and margin(g; x; y). We can derive the analog of Equation (7) as follows:

P

g�Q

�

margin(g; x; y)� �=2 j margin(f; x; y) > �

�

= P

g�Q

�

9y

0

6= y : g(x; y)� g(x; y

0

) � �=2 j 8y0 6= y : f(x; y)� f(x; y

0

) > �

�

�

X

y

0

6=y

P

g�Q

�

g(x; y)� g(x; y

0

) � �=2 j f(x; y)� f(x; y

0

) > �

�

� (k� 1)e�N�

2
=8
:

Proceeding as in the proof of Theorem 1, we see that, with probability at least 1� �, for any � > 0
and N � 1,

P

D

�

margin(f; x; y) � 0
�

� P

S

�

margin(f; x; y) � �

�

+ ke

�N�

2
=8

+

s

1
2m

ln
�

N(N + 1)2
jHj

N

�

�

:

Setting N =

�

(4=�2
) ln(mk

2
= ln jHj)

�

gives the result.
For infinite H, we follow essentially the same modifications to the argument above as used in the

proof of Theorem 2. As before, to apply Lemma 3, we need to derive an upper bound on s(A; m) where

A = ff(x; y) 2 X � Y : margin(g; x; y)> �=2g : g 2 C
N

; � > 0g :

Let x1; : : : ; xm 2 X and y1; : : : ; ym 2 Y . Then applying Sauer’s lemma to the set f(x
i

; y) : 1 � i �

m; y 2 Y g gives

jfhh(x1; 1); : : : ; h(x1; k); : : : ; h(xm; 1); : : : ; h(x
m

; k)i : h 2 Hgj �
d

X

i=0

km

i

!

�

�

emk

d

�

d

:

This implies that

jfhg(x1; 1); : : : ; g(x1; k); : : : ; g(xm; 1); : : : ; g(x
m

; k)i : g 2 C
N

gj �

�

emk

d

�

dN

;

and hence

jf(margin(g; x1; y1); : : : ;margin(g; x
m

; y

m

)) : g 2 C
N

gj �

�

emk

d

�

dN

:

Thus, s(A; m) � (N + 1)(emk=d)

dN . Proceeding as before, we obtain the bound

P

D

�

margin(f; x; y) � 0
�

� P

S

�

margin(f; x; y) � �

�

+ ke

�N�

2
=8

+

s

1
2m

�

dN ln
�

em

2
k

d

�

+ ln
4e8

N(N + 1)2

�

�

:

Setting N as above completes the proof.

B Brief Descriptions of Datasets

In this appendix, we briefly describe the datasets used in our experiments.

27

examples #
name train test classes features
vehicle 423 423 4 18
satimage 4435 2000 6 36
letter 16000 4000 26 16

Table 2: The three benchmark machine-learning problems used in the experiments.

B.1 Non-synthetic datasets

In Section 4, we conducted experiments on three non-synthetic datasets called “letter,” “satimage” and
“vehicle.” All three are available from the repository at the University of California at Irvine [30].

Some of the basic characteristics of these datasets are given in Table 2. The letter and satimage
datasets came with their own test sets. For the vehicle dataset, we randomly selected half of the data to
be held out as a test set. All features are continuous (real-valued). None of these datasets have missing
values.

The letter benchmark is a letter image recognition task. The dataset was created by David J. Slate.
According to the documentation provided with this dataset, “The objective is to identify each of a large
number of black-and-white rectangular pixel displays as one of the 26 capital letters in the English
alphabet. The character images were based on 20 different fonts and each letter within these 20 fonts
was randomly distorted to produce a file of 20,000 unique stimuli. Each stimulus was converted into 16
primitive numerical attributes (statistical moments and edge counts) which were then scaled to fit into
a range of integer values from 0 through 15.”

The satimage dataset is the statlog version of a satellite image dataset. According to the docu-
mentation, “This database consists of the multi-spectral values of pixels in 3 � 3 neighborhoods in a
satellite image, and the classification associated with the central pixel in each neighborhood. The aim
is to predict this classification, given the multi-spectral values... The original database was generated
from Landsat Multi-Spectral Scanner image data... purchased from NASA by the Australian Center for
Remote Sensing, and used for research at The Center for Remote Sensing... The sample database was
generated taking a small section (82 rows and 100 columns) from the original data. The binary values
were converted to their present ASCII form by Ashwin Srinivasan. The classification for each pixel
was performed on the basis of an actual site visit by Ms. Karen Hall, when working for Professor John
A. Richards.... Conversion to 3� 3 neighborhoods and splitting into test and training sets was done by
Alistair Sutherland....”

The purpose of the vehicle dataset, according to its documentation, is “to classify a given silhouette
as one of four types of vehicle, using a set of features extracted from the silhouette. The vehicle may
be viewed from one of many different angles... This dataset comes from the Turing Institute... The
[extracted] features were a combination of scale independent features utilizing both classical moments
based measures such as scaled variance, skewness and kurtosis about the major/minor axes and heuristic
measures such as hollows, circularity, rectangularity and compactness. Four ‘Corgie’ model vehicles
were used for the experiment: a double decker bus, Chevrolet van, Saab 9000 and an Opel Manta 400....
The images were acquired by a camera looking downwards at the model vehicle from a fixed angle of
elevation....”

28

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

a2

a1

Class 0

Class 1

Class 2

Class 3

Class 3Class 4

Class 5

Figure 7: The 2-dimension, 6-class classification problem defined by Kong and Dietterich [26] on the region
[0; 15]� [0; 15].

B.2 Synthetic datasets

In Section 5, we described experiments using synthetically generated data. Twonorm, threenorm and
ringnorm were taken from Breiman [8]. Quoting from him:

� Twonorm: This is 20-dimension, 2-class data. Each class is drawn from a multivariate normal
distribution with unit covariance matrix. Class #1 has mean (a; a; :::; a) and class #2 has mean
(�a;�a; :::;�a) where a = 2=

p

20.

� Threenorm: This is 20-dimension, 2-class data. Class #1 is drawn with equal probability
from a unit multivariate normal with mean (a; a; :::; a) and from a unit multivariate normal
with mean (�a;�a; :::;�a). Class #2 is drawn from a unit multivariate normal with mean
(a;�a; a;�a; :::;�a)where a = 2=

p

20.

� Ringnorm: This is 20-dimension, 2-class data. Class #1 is multivariatenormal with mean zero and
covariance matrix 4 times the identity. Class #2 has unit covariance matrix and mean (a; a; :::; a)

where a = 1=
p

20.

The waveform data is 21-dimension, 3-class data. It is described by Breiman et al. [9]. A program
for generating this data is available from the UCI repository [30].

The last dataset was taken from Kong and Dietterich [26]. This is a 2-dimension,6-class classification
problem where the classes are defined by the regions of [0; 15]� [0; 15] shown in Figure 7.

C Two Definitions of Bias and Variance for Classification

For the sake of completeness, we include here the definitions for bias and variance for classification tasks
which we have used in our experiments. The first set of definitions is due to Kong and Dietterich [26]

29

and the second one is due to Breiman [8]. Assume that we have an infinite supply of independent
training sets S of sizem. Each sampleS is drawn i.i.d. from a fixed distributionD over X�f1; : : : ; kg
where k is the number of classes. Denote by C

S

the classifier that is generated by the base learning
algorithm given the sample S. Denote by C

A

the classification rule that results from running the base
learning algorithm on an infinite number of independent training sets and taking the plurality vote6 over
the resulting classifiers. Finally denote by C

� the Bayes optimal prediction rule for the distribution
D. The prediction of a classifier C on an instance x 2 X is denoted C(x) and the expected error of a
classifier C is denoted

PE(C)

:

= P

(x;y)�D

�

C(x) 6= y

�

:

The definitions of Kong and Dietterich are:

Bias :

= PE(C

A

)� PE(C

�

) ;

Variance :

= E

S�D

m

�

PE(C

S

)

�

� PE(C

A

) :

Breiman defines a partition of the sample space into two sets. The “unbiased” set U consists of all
x 2 X for which C

A

(x) = C

�

(x) and the “biased” set B is U ’s complement. Given these sets the
definition of bias and variance are:

Bias :

= P

(x;y)�D

�

C

�

(x) = y; x 2 B

�

�E

S�D

m

h

P

(x;y)�D

�

C

S

(x) = y; x 2 B

�

i

;

Variance :

= P

(x;y)�D

�

C

�

(x) = y; x 2 U

�

� E

S�D

m

h

P

(x;y)�D

�

C

S

(x) = y; x 2 U

�

i

:

6The plurality vote outputs the class which receives the largest number of votes, breaking ties uniformly at random. When
k = 2 the plurality vote is equal to the majority vote.

30

