Machine Learning, 22(1/2/3):95-121, 1996.

On the Wor st-case Analysis of Tempor al-difference
L earning Algorithms

ROBERT E. SCHAPIRE schapire@research.att.com
AT& T Bell Laboratories, 600 Mountain Avenue, Room 2A-424, Murray Hill, NJ 07974

MANFRED K. WARMUTH manfred@cse.ucsc.edu
Computer and Information Sciences, University of California, Santa Cruz, CA 95064

Editor: Ledie Pack Kaelbling

Abstract. We study the behavior of a family of learning algorithms based on Sutton’s method of temporal
differences. In our on-line learning framework, learning takes place in a sequence of trials, and the goal of
the learning algorithm is to estimate a discounted sum of all the reinforcements that will be received in the
future. In this setting, we are able to prove general upper bounds on the performance of a dlightly modified
version of Sutton’s so-called TD(\) algorithm. These boundsare stated in terms of the performance of the best
linear predictor on the given training sequence, and are proved without making any statistical assumptionsof any
kind about the process producing the learner’s observed training sequence. We also prove lower bounds on the
performanceof any algorithm for thislearning problem, and giveasimilar analysisof the closely related problem
of learning to predict in amodel in which the learner must produce predictionsfor awhole batch of observations
before receiving reinforcement.

Keywords: machinelearning, temporal-differencelearning, on-linelearning, worst-case analysis

1. Introduction

Asan example, consider the problem of estimating the present value of a company. At the
end of each quarter ¢, a company returns a profit »;. In terms of its future profits, what is
the company worth today? One possible answer issimply the sum total of all future profits
Y reo Tt+k, but thisis clearly an unsatisfactory measure of present worth since a dollar
earned today is certainly worth more than a dollar earned ten years from now. Indeed,
taking into account inflation and the exponentia growth rate of money that isinvested, it
can be argued that future profits drop in value exponentially with time.

For thisreason, it iscommon to discount profitsr;, earned & time steps in the future by
~*, where vy < 1 is aparameter that estimates the rate at which future profits diminishin
value. Thisleadsto adefinition of the present value of the company as the discounted sum

Yt = Z’Ykrt+k~ D)
k=0

Suppose now that we want to predict or estimate the present value y; asdefined in Eq. (1).
Obviously, if we know all the future profits 4, r:+1, . . ., then we can compute y; directly,
but it would be absurd to assume that the future is known in the present.

2 R. E. SCHAPIRE AND M. K. WARMUTH

Instead, we consider the problem of estimating y; based on current observationsthat can
be made about the world and the company. We summarize these observationsabstractly by
avector x, € ™. This vector might include, for instance, the company’s profitsin recent
quarters, current sales figures, the state of the economy as measured by gross national
product, etc.

Thus, at the beginning of each quarter ¢, the vector x, isobserved and an estimate ; € R
is formulated of the company’s present value y;. At the end of the quarter, the company
returns profit »;. The goal isto make the estimates y; as close as possibleto y;.

We study this prediction problem more abstractly as follows: At each pointintimet =
1,2,..., alearning agent makes an observation about the current state of its environment,
which is summarized by areal vector x, € 2™V, After having made this observation, the
learning agent receives some kind of feedback from its environment, which is summarized
by areal number ;. The goa of the learning agent is to learn to predict the discounted
sum y; givenin Eq. (1) where y € [0, 1) is some fixed constant called the discount rate
parameter.

At each time step ¢, after receiving the instance vector x; and prior to receiving the
reinforcement signal r;, we ask that thelearning algorithm make aprediction g, of thevalue
of y;. We measure the performance of the learning algorithm in terms of the discrepancy
between ¢, and y;. There are many ways of measuring this discrepancy; in this paper, we
use the quadraticlossfunction. That is, we definetheloss of the learning algorithm at time
t tobe (g; — y:)?, and the loss for an entire sequence of predictionsisjust the sum of the
losses at each trial. Thus, the goa of the learning algorithm isto minimize its loss over a
sequence of observation/feedback trials.

We study the worst-case behavior of afamily of learning agorithms based on Sutton’s
(1988) method of temporal differences. Specifically, weanayzeadightly modified version
of Sutton’sso-called TD() agorithm in aworst-case framework that makes no statistical
assumptions of any kind. All previousanalyses of TD(\) haverelied heavily on stochastic
assumptions about the nature of the environment that is generating the data observed by
the learner (Dayan, 1992; Dayan & Segjnowski, 1994; Jaakkola, Jordan & Singh, 1993;
Sutton, 1988; Watkins, 1989). For instance, the learner’s environment is often model ed by
aMarkov process. We apply some of our resultsto Markov processes later in the paper.

The primary contribution of our paper is to introduce a method of worst-case analysis
to the area of temporal-difference learning. We present upper bounds on the loss incurred
by our temporal-differencelearning a gorithm (denoted by TD* (X)) which hold even when
the sequence of observationsx; and reinforcement signals r, isarbitrary.

To make our bounds meaningful in such an adversarial setting, we compare the perfor-
mance of the learning agorithm to the loss that would be incurred by the best prediction
function among afamily of prediction functions; in this paper, thisclass will dwaysbethe
set of linear prediction functions. More precisely, for any vector u € BV, let

L (u, S) = Z(u X — ye)”

t=1

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 3

denote the loss of vector u on the first ¢ trials of training sequence S. That is, Lf(u, S)
is the loss that would be incurred by a prediction function that predicts u - x; on each
observation vector x;.

We compare the performance of our learning algorithms to the performance of the best
vector u (of bounded norm) that minimizes the loss on the given sequence. For example,
we prove below that, for any training sequence .S, the loss on thefirst ¢ trialsof TD*(1) is
at most!

min (LZ(U,S)—i—Q\/EUXocW—I— ||u||2onc$) (2
[lal|<U
L*(u,5)<K

where ¢, = (14 v)/(1 —). (Here, U, X, and K are parameters that are used to
“tune’ the algorithm’s “learning rate:” specificaly, it is assumed that ||x;|| < X,, and
that min{L*(u,S) : |Ju|] < U} < K. Various methods are known for guessing these
parameters when they are unknown; see, for instance, Cesa-Bianchi, Long and Warmuth's
paper (1993).) Thus, TD* (1) will perform reasonably well, provided that there exists some
linear predictor u that gives a good fit to the training sequence.

To better understand bounds such as those given in Eq. (2), it is often helpful to consider
the average per-tria loss that is guaranteed by the bound. Suppose for the moment, asis
likely to bethe casein practice, that U, X, and v arefixed, and that K growslinearly with
the number of tridls ¢, so that K = O(¢). Then Eq. (2) implies that the average per-tria
lossof TD*(1) (i.e, the total cumulative loss of TD*(1) divided by the number of trials ¢)
isat most

min - (F0(7)).

L*(u,5)<K

In other words, as the number of trials £ becomes large, the average per-trial loss of
TD*(1) rapidly approaches the average | oss of the best vector u. Furthermore, the rate of
convergence is given explicitly as O(1/V7).

Note that the above result, like all the others presented in this paper, provides a charac-
terization of the learner’s performance after only afinite number of time steps. In contrast,
most previouswork on TD(A) has focused on its asymptotic performance. Moreover, pre-
vious researchers have focused on the convergence of the learner’s hypothesisto a “true’
or “optima” model of the world. We, on the other hand, take the view that the learner’s
one and only goal is to make good predictions, and we therefore measure the learner’s
performance entirely by the quality of its predictions.

The upper bound given in Eg. (2) on the performance of TD*(1) is derived from amore
generd result we prove on the worst-case performance of TD*(A) for general A. Our
bounds for the special case when A = 0 or A = 1 can be stated in closed form. The proof
techniques used in thispaper are similar but more general than those used by Cesa-Bianchi,
Long and Warmuth (1993) in their analysis of the Widrow-Hoff agorithm (corresponding
to the case that v = 0).

4 R. E. SCHAPIRE AND M. K. WARMUTH

Note that min{L‘(u,) : u € R} is the best an arbitrary linear model can do that
knowsall y; - - -y, ahead of time. If the on-line learner were given y, at the end of tria ¢
(i.e, if ¥ = 0), then the Widrow-Hoff a gorithm would achieve aworst case bound of

min (L‘(u, S)+ 2VEKU X, + ||u||2X02)
llull<U
Lf(u,5)<K

(matching the bound in Eq. (2) with~ set to 0). However, in our model, thelearner isgiven
only the reinforcements r;, even though its goal is to accurately estimate the infinite sum
y: givenin Eq. (1). Intuitively, as vy gets larger, thistask becomes more difficult since the
learner must make predictions about events farther and farther into the future. All of our
worst-case | oss bounds depend explicitly on v and, not surprisingly, these boundstypically
tend to infinity or become vacuous as vy approaches 1. Thus, our bounds quantify the price
one hasto pay for giving the learner successively less information.

In addition to these upper bounds, we prove a general lower bound on the loss of any
algorithm for this prediction problem. Such alower bound may be helpful in determining
what kind of worst-case bounds can feasibly be proved. None of our upper bounds match
the lower bound; it is an open question whether this remaining gap can be closed (thisis
possiblein certain special cases, such aswheny = 0).

Finally, we consider a dightly different, but closely related learning model in which the
learner is given awhole batch of instances at once and thetask isto giveapredictionfor al
instances before an outcome is received for each instance in the batch. Thelossinatria ¢
is||§: — y+||% where §, isthe vector of predictionsand y, the vector of outcomes. Again,
the goal isto minimizethe additional total loss summed over all trialsin excess of thetotal
loss of the best linear predictor (of bounded norm).

In this batch model all instances count equally and the exact outcome for each instance
isreceived at theend of each batch. A specia case of thismodel is when the algorithm has
to make predictions on a whole batch of instances before receiving the same outcome for
all of them (a case studied by Sutton (1988)).

We again prove worst-case bounds for this model (extending Cesa-Bianchi, Long and
Warmuth's(1993) previousanalysisfor thenoise-free case). We a so prove matching lower
bounds for this very genera model, thus proving that our upper bounds are the optimal
worst-case bounds.

The paper is outlined as follows. Section 2 describes the on-line model for temporal
differencelearning. Section3givesSutton’sorigina temporal differencelearning a gorithm
TD(A) and introduces our new agorithm TD* (). Section 4 contains the worst-case |oss
bounds for the new agorithm, followed by Section 5 containing a lower bound for the
on-line model. In Section 6, we illustrate our results with an application of TD*(1) to
obtain akind of convergence result in a Markov-process setting. We present our resultsfor
the batch model in Section 7. Finaly, we discuss the merits of the method of worst-case
analysisin Section 8.

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 5

2. Theprediction mode

In this section, we describe our on-line learning model. Throughout the paper, N denotes
the dimension of the learning problem. Each trial ¢ (t = 1,2, .. .) proceeds as follows:

1. Thelearner receives instance vector x; € R
2. Thelearner isrequired to compute a prediction g, € IR.

3. Thelearner receives areinforcement signal r; € IR.

The goal of thelearner isto predict not merely the next reinforcement signal, but rather a
discounted sum of all of thereinforcements that will be received in thefuture. Specifically,
the learner istrying to make its prediction y; as close as possibleto

(o)
k
t :Z’Y Tt4k
k=0

wherey € [0, 1) is afixed parameter of the problem. (We will always assume that this
infinite sum converges absolutely for al ¢.)

Note that if we multiply y; by the constant 1 — +, we obtain a weighted average of all
the future r,’s; that is, (1 — v)y: isaweighted average of ¢, 7141, Thusit might be
more natural to use the variables ¢, = y,(1 — 7). (For instance, if dl r; equa r, then the
modified variables y; al equal r aswell.) However, for the sake of notational simplicity,
we usethe variables y, instead (as was done by Sutton (1988) and others).

The infinite sequence of pairs of instances x; and reinforcement signals r, is called a
training sequence (usually denoted by S). The loss of the learner at tria ¢ is (y; — 9:)?,
and thetotal loss of an algorithm A on thefirst ¢ trialsis

4
Z Y — yt
t=1

Similarly, thetotal loss of aweight vector u € R onthefirst ¢ tridlsis defined to be

L
Zyt—u Xt

o~
—_

The purpose of this paper is to exhibit agorithms whose loss is guaranteed to be “not
too much worse” than the loss of the best weight vector for the entire sequence. Thus, we
would liketo show that if there exists aweight vector u that fits the training sequence well,
then the learner’s predictionswill a so be reasonably good.

6 R. E. SCHAPIRE AND M. K. WARMUTH

3. Temporal-difference algorithms

We focus now on afamily of learning algorithmsthat are only adlight modification of those
considered by Sutton (1988). Each of these algorithmsis parameterized by area number
A €[0,1]. Forany sequence Sand¢ = 1,2, - - -, let

t

Xp =) (N xy (3)

k=1

be aweighted sum of all previously observed instances x;. The parameter A controlshow
strong an influence past instances have. For instance, when A = 0, X? = x, so only the
most recent instance is considered.

The learning algorithm 7'D(\) works by maintaining a weight vector w;, € RY. The
initial weight vector w; may be arbitrary, athough in the ssimplest case w; = 0. The
weight vector w, isthen updated to the new weight vector w;; using thefollowing update
rule:

Wit = Wi + (7 + Y41 — @t)X? 4)

As suggested by Sutton (1988), the weight vectors are updated using X;' rather than x;,
allowing instances prior to x; to have a diminishing influence on the update.

The constant »; appearing in Eq. (4) iscaled thelearning rateontria ¢. Wewill discuss
later how to set the learning rates using prior knowledge about the training sequence.

In Sutton’s origina presentation of 7' D(A), and in most of the subsequent work on the
agorithm, the prediction at each stepissimply y; = w; - x;. We, however, have found that
avariant on this prediction rule leads to asimpler anaysis, and, moreover, we were unable
to obtain worst-case |0ss bounds for the original algorithm TD(A) as strong as the bounds
we prove for the new agorithm.

Our variant of TD(A) uses the same update (4) for the weight vector as the original
algorithm, but predicts as follows:

t—1

Y = Wy X+ Z(’Y/\)t_k(wt CXp — gk)
k=1
t—1

= w X2 =) () . (5)
k=1

This new agorithm, which we call TD*(}), issummarized in Fig. 1.

The rule (4) for updating w41 has w;, implicitin g;41, S0 & first it seemsimpossible
to do this update rule.? However, by multiplying Eq. (4) by X?H, one can first solve for
¥:+1 and then compute w; ;. Specifically, thisgivesasolutionfor g, of

(wi e — 50XD) - Xy = Sy ()
+ k=1
L= niyX3 'X?\+1
(We 4 m(re — 90X3) - X — () we - X7
L=y X3 XZ\+1

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 7

Algorithm TD* ()
Parameters: discount ratey € [0, 1)
Aef0,1]
start vector w; € RY
method of computing learning rate 1,
Given: training sequence xi, r1, X2, r'a, - - .
Predict: yl,yz,...
Procedure:
gd X1
Xi\ — X1
g —wy - X}
fort=1,2,...
predict g (+ g = wy - X3 — Y475 (YA P %)
ge Tt
get Xy 41
X1 — X1+ (A)X]
compute 7
wy - X1+ (e — 90) X3 Xf‘+1
L=y X3 - X3y,
Wip1 — Wi + 0(rs + Y41 — Qt)Xf‘
end

Y41 —

Figure 1. Pseudocodefor TD* ().

WXy F ne(ry — @t)X? 'Xi\+1
1=y Xy - X3y,

where, in the first equality, we assume inductively that Eq. (5) holds at tria ¢. Thus, we
can solve successfully for g4, provided that vn, X7 - X7, # 1, aswill bethe case for al
the values of », we consider. Also, note that ¢4, is computed after the instance x;41 IS
received but before the reinforcement r;,; isavailable (see Fig. 1 for details).

Note that for the prediction g, = w; - x; of TD(}),

Ve, (¥ — 0)* = —20:(ye — 91)%
=20:(7e + Y41 — U)Xz

X

(Since y; = 1 + yy141 isnot available to the learner, it is approximated by r; + v3:41.)
Thus with the prediction rule of TD()) the update rule (4) is not gradient descent for
al choices of A. In contrast, with the new prediction rule (5) of TD*()), the update
rule (4) used by both algorithmsis gradient descent,® sinceiif 3, is set according to the new

8 R. E. SCHAPIRE AND M. K. WARMUTH

prediction rule then

th(yt - yt)z = _277t(yt — yt)X?
~ =20:(re 4 Ve —)X

We can a so motivatetheterm — Zz;ll(w)f—kyk inthepredictionrule of TD*(\) given

in Eq. (5): In this paper, we are comparing the total loss of the algorithm with the total
loss of the best linear predictor, so both algorithms TD(A) and TD* () try to match the
y.'swith an on-linelinear modd. In particular, if y, = w - x; (that is, the y,’sare alinear
function of thex,’s) and theinitial weight vector isthe“correct” weight vector w, then the
algorithmsshould always predict correctly (so that 5, = y;) and theweight vector w, of the
algorithms should remain unchanged. It is easy to prove by induction that both algorithms
have this property.

Thus, in sum, the prediction rule y; = wy - X? + ¢, is motivated by gradient descent,
where ¢; is any term that does not depend on the weight vector w,. The exact value for ¢,
isderived using the fact that, in the case described above, wewant g, = y, for all ¢.

4. Upper boundsfor TD*(A)

In proving our upper bounds, we begin with a very genera lemma concerning the perfor-
mance of TD* (). We then apply thelemmato derive an analysis of some specia cases of
interest.

LEmMMA 1 Lety €[0,1),A € [0,1],andlet .S beanarbitrary training sequence such that
[|X} || < X, for all trialst. Let u be any weight vector, and let ¢ > 0.

If we execute TD*(A) on S with initial vector w, and learning rates , = n where
0 < nXx?y < 1, then

bL (u, S) 4 |Ju— wy|?
Cy

LYTD*(X), 9) ginf{ :b>0,Cb>0}

where C', equals
2 2
a2y, 2 2y _ 1~ 7 —A
— " Xa"(1+797) p (1—1—(1_7/\))

- E) (2= D))

Proof: Forl <t¢ < /{, welete, =y — gy, and ey = ¥ — u - x,. We further define
ec+1 = 0. Note that the loss of the algorithm at trial ¢ ise,? and the loss of u is ey ;2.
Since, for ¢ < ¥,

T+ YY1 — U = T YY1 — (P F Y1) Y — U

= €t — Y€t+1,

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 9

we can write Eq. (4), the update of our algorithm, conveniently as

Wi = Wi+ (e — e 1) X7 (6)
To simplify the proof, we also define

W1 = we + e X))

so that Eq. (6) holdsfor all ¢ < ¢. (In fact, this definition of w,, differs from the vector
that would actually be computed by TD* (). Thisisnot a problem, however, sincewe are
here only interested in the behavior of theal gorithmon thefirst ¢ trial swhich are unaffected
by thischange.)

We usethefunction progr, to measure how much “closer” the algorithm getsto u during
trial ¢+ as measured by the distance function || - ||%:

progr, = |ju— Wt||2 — |[a— Wt+1||2~
Let Aw, = wy 1 — wy for¢t < £. We have that
IAW* = n*(ec = yersn) X1
< X (e —vern)’
and that
Aw, - (wi—u) = g(e; —yern)(we - X3 —u- X3)

t

= nles = veip1) (PN (G —u-x)

= nler — yet41) Z(’Y/\)t_k(eu,k — €k)

k=1

where the second equality followsfrom Egs. (3) and (5), and thelast equality from the fact
that

Yp—u-Xp = Yp— Yk +Yp — W Xp
= €uk — €k
Since —progr, = 2Aw; - (w; —u) + ||Aw||?, we have that

~llwi—ul]” < [lwers —ul]® = [[wy —ulf?

4
- Z progr;
t=1

20y (e = ves) D (7N T (ewr — er)

k=1

IN

4
+P X7 (e = veunn)”. (")

t=1

10 R. E. SCHAPIRE AND M. K. WARMUTH

This can be written more concisely using matrix notation asfollows: Let Z; bethe? x ¢
matrix whose entry (¢, j) isdefinedtobe 1 if j = i + & and 0 otherwise. (For instance, Zg
istheidentity matrix.) Let D = Zy — vZ;, and let

-1

V=> (7N)'Z.

t=0

Finally, let e (respectively, e,) bethelength ¢ vector whose ¢'" dlement ise; (respectively,
eu,t). Then thelast expressionin Eq. (7) isequal to

’X,’e" DT De + 2’ DTV (e, —e). (8)
This can be seen by noting that, by a straightforward computation, the ¢t'" element of De

ise; — vesq1, and thet™™ element of V¥(e, — e) is

> (A T (eun —).

k=1

We also used theidentity (De)” = e D7.
Using the fact that 2p”q < ||p||2 + ||q]|? for any pair of vectors p,q € R, we can
upper bound Eg. (8), for any b > 0, by
2

X ’e'DTDe — 2pe’ DT VTe + %eTDTVTVDe + bey ey 9

(Whereweuse p = (/v/b) VDe and q = /b e,,). Defining
2

M = 2X,?DTD — (VD + DTVT) + %DTVTVD,
and noting that e’ D7 VT e = e” VDe, we can write Eq. (9) simply as

e"Me + be, L ey.

Note that M issymmetric. It isknown that in this case

= p(M) (10)

where p(M) isthe largest eigenvalue of M. (See, for instance, Horn and Johnson (1985)
for background on matrix theory.) Thus, for al vectorse, e’ Me < p(M)e” e. It follows
from Eq. (7) that

4
—llwi=u” <5 e+ p(M) D e/

t=1 t=1

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 11

4 4

—p(M) Y e < lwi—ulP+5) e

t=1 t=1

In the appendix, we complete the proof by arguing that p(M) < —Cj.]

Having proved Lemma 1 in gory generality, we are now ready to apply it to some special
cases to obtain bounds that are far more palatable. We begin by considering the case that
A = 0. Notethat TD(0) and TD*(0) are identical.

THEOREM 1 Let 0 < v < 1, and let .S be any sequence of instances/reinforcements.
Assume that we know a bound X, for which ||x;|| < X5.

If TD*(0) uses any start vector w, and learning rates,, = n = 1/(X,” + 1), we have
for all ¢ > 0 andfor all u € R:

(1+ Xo*)(L*(u, 9) + [[wi — u|?)
1—~2

LY(TD*(0), S) < . (12)

Assume further that we know bounds K and U/ such that for someu wehave L¢(u, S) < K
and ||w; — u|| < U. Thenfor thelearning rate

U
T XK 8T

we have that

Lf(u, S) 4 2U XoV'K + Xo?||w1 —u]]?

L *
L (TD (O)aS) S 1_72

(12)

Proof: When A = 0, C, smplifiesto
1 1
22—y’ (onJrg) (1+72)—27‘77—772 (X02+3)‘.

To minimize theloss bound givenin Lemma 1, we need to maximize C;, with respect to ».
It can be shown that, in thiscase, C} is maximized, for fixed b, when

1

Ayt (13)

n

Thefirst bound (Eqg. (11)) isthen obtained by choosing b = 1.

If bounds K and U are known as stated in the theorem, an optimal choice for & can be
derived by plugging the choice for » given in Eq. (13) into the bound in Lemma 1, and
replacing L*(u, S) by K and ||u — w1 ||? by U2. Thisgives

(bK + U?)(Xo? 4 1/b)
1—~2

12 R. E. SCHAPIRE AND M. K. WARMUTH

which is minimized when b = U/(X,v/K). Plugging this choice of b into the bound of
Lemma 1 (and setting » asin Eq. (13)) gives the bound

(ULf(u, S)/XoVE + |Ju— w1||2) (X02 + XWE/U)

1—~2
~ L'(u,8) + L*(u, S)XoU/VE + [[u— wi|[*XovVE /U + |Ju — w1]|2X,°
— T
< Lf(u, S) 4 2XoUVEK + |Ju — wq||>Xo?

Next, we consider the case that A = 1.

THEOREM 2 Let0 < v < 1,£> 0andlet.S beanysequence of instances/reinforcements.
Assume that we know a bound X for which || X}|| < X7, and that we know bounds K and
U such that for someu we have Lf(u, S) < K and ||w; — u|| < U. Thenif TD*(1) uses
any start vector w; and learning rates

U
UX:*(14+7)? + X (L+ VK

h=n=
then
LYTD*(1),8) < L (u, 8) + 2VE(1L + 1)U X1 + (1 +7)?||w1 — ul]?X, 7.

Proof: WhenX =1,

2

Cy=2n—1° X2 (14 7)% - %
Thisis maximized, with respect to , when

1
X2l +7)2+ 1/
Proceeding as in Theorem 1, we see that the best choicefor b is

7]:

_ U
S (l+)XVE

Plugging into the bound in Lemma 1 compl etes the theorem.]

The bound in Eg. (2) is obtained from Theorem 2 by setting w; = 0, and noting that

t
_ max{[pol: 1<k <)
1< D27 s = (14)
k:

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 13

650 6500

600 6000

550 5500

500 5000

450 4500

400 4000

350 3500

Figure 2. Theloss bound givenin Lemma 1 asafunction of A when n is chosen so as to minimize the bound.

by thetriangle inequdity; thus, X can be replaced by X, /(1 — 7). Notethat the bounds
in Egs. (2) and (12) are incomparable in the sense that, depending on the values of the
quantities involved, either bound can be better than the other. This suggests that TD*(0)
may or may not be better than TD"(1) depending on the particular problem at hand; the
bounds we have derived quantify those situations in which each will perform better than
the other.

Ultimately, we hope to extend our analysisto facilitate the optimal choice of » > 0 and
A € [0, 1]. In the meantime, we can numerically find the choices of » and A that minimize
theworst-case bound givenin Lemma 1. Fig. 2 showsgraphs of the worst-case bound given
in Lemma 1 as afunction of A when # is chosen so as to minimize our worst-case bound
and for fixed settings of the other parameters. More specifically, in al the graphswe have
assumed ||w; —u|| = 1,and ||x;|| < 1 (whichimpliesthat || X}|| < 1/(1—7)). Wehave
aso fixed y = 0.7. Figs. 2a b, c and d assume that Z‘(u, S) equas 3, 30, 300 and 3000,
respectively, and each curve shows the upper bound on Lf(TD* (), S) givenin Lemma 1.
The straight solid linein each figure shows the lower bound obtained in Section 5. In each

14 R. E. SCHAPIRE AND M. K. WARMUTH

figure the z-axis crosses the y-axis a the value of L¢(u, S). Note that the gap between
the lower bound and Z*(u, S) grows as 6(y/L*(u, S)) when all other variables are kept
congtant. (Thisis not visible from the figures because the scaling of the figures varies.)
The figures were produced using Mathematica.

As the figures clearly indicate, the higher the loss L(u, S), the higher should be our
choice for A. It isinteresting that in some intermediate cases, an intermediate value for A
in (0, 1) isthe best choice.

5. A lower bound

We next prove a lower bound on the performance of any learning algorithm in the model
that we have been considering.

THEOREM 3 Lety € [0,1], X, > 0, K > 0, U > 0 and ¢ a positive integer. For every
algorithm A, there exists a sequence S’ such that the following hold:

L [fxll < Xo,
2. K =min{Lu,S) : ||u|]| < U},and
3. LY(A4,9) > (VK + UXo\/o7)*
where o, := Zi;é 42k,

Proof: Themainideaof theproof isto construct atraining sequence in whichthelearning
algorithm A receives essentially no information until trial ¢, at which time the adversary
can force the learner to incur significant loss relative to the best linear predictor.

Without lossof generality, we provetheresult in the one-dimensional case® (i.e, N = 1),
so we write the instance x; simply as #;. The sequence S is defined as follows: We let
xy =71 Xy fort < ¢, and 2, = 0 fort > ¢ (thus satisfying part 1). The reinforcement
givenisr; = 0ift £ ¢, andr, = sz wherez = UXy + /K/o,and s € {—1,+1} is
chosen adversarially after A has made predictionsy , . . ., g, onthefirst £ trias. Then

oQ

=t
_ s Al ift <2
Yo = ;7 St { 0 otherwise.

To see that part 2 holds, let uw = « be any vector (scalar, redly, since N = 1) with
|u] < U. Then

J2

LZ(U,S) = Z(Ul‘t—yt)z

t=1

¢
= nyz(z_t)(uXo — 52)*

t=1
(uXo — sz)zaz.

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 15

Since |u| < U, it can be seen that this is minimized when « = sU, in which case
Lf(u, S) = K by z’s definition.
Finally, consider the loss of A on this sequence:

¢ ¢
LYAS) =D (e —w)* =D (5 — 57" '2)°
t=1 t=1

For any real numbersp and ¢, wehave (p — ¢)? + (p + q)* = 2(p* + ¢*) > 24¢%. Thus, if
s € {—1,+1} ischosen uniformly at random, then A’s expected losswill be

4
1 . _ . _
3 ((G =772+) (0 +7 tZ)z)
t t=1

> Y (47)? = 2oy = (VE + UXoyae).

]~

1

]~

o~
1

1

It followsthat for the choice of s € {—1,+1} that maximizes A’s |oss, we will have that

LY(A, S) > (VK + UXy\/a7)? asclaimed. |
When K = 0, Theorem 3 gives a lower bound of U/>X,%/s, which approaches

U?Xo?/(1 — 4*) as ¢ becomes large. This lower bound matches the second bound of
Theorem 1 in the corresponding case. Thus, in the “noise-free” case that there exists a
vector u that perfectly matches thedata (i.e., min{L*(u, S) : |[u|| < U} = 0), thisshows
that TD*(0) is“optimal” in the sense that its worst-case performance is best possible.

6. An application to Markov processes

For the purposes of illustration, we show in this section how our resultscan be appliedinthe
Markov-process setting more commonly used for studying temporal -difference algorithms.
Specifically, we prove akind of convergence theorem for TD*(1).

We consider Markov processes consisting of afiniteset of statesdenoted 1,2, ..., N. An
agent moves about the Markov process in the usual manner: An initial state ¢; is chosen
stochagtically. Then, at each time step ¢, the agent moves stochastically from state i, to
state i;1 where ¢; 1 may depend only on the preceding state ;. Upon exiting state ¢;, the
agent receives a probabilistic reward r; which also may depend only on ;.

Formally, the Markov process is defined by a transition matrix Q € [0, 1]V *¥ and an
initial state distribution matrix p; € [0, 1]V, The entries of each column of Q sumto 1,
as do the entries of p;. The interpretation here is that the initial state ¢; is distributed
accordingtopy, and if theagentisin states, at timet, thenthenext statei; ., isdistributed
according to the i, ' column of Q. Thus, state 7, has distributionp; = Q*~!p;.

The reward r; received at time ¢ depends only on the current state i; so formally we
can write r; = r(wy, i;) where wy, ws, .. . are independent identically distributed random
variables from some event space 2, and r : © x {1,..., N} — R issome fixed function.

16 R. E. SCHAPIRE AND M. K. WARMUTH

Let V; denotethe expected discounted reward for arandom walk produced by the Markov
process that beginsin state i. That is, we define the value function

Vi:=E lZ’YkTHk |41 = l]

k=0

where, asusual, y € [0, 1) isafixed parameter. Our goal isto estimate V;, a problem often
referred to as val ue-function approximation.

At each time step ¢, the learner computes an estimate W of the value function. Thus,
learning proceeds as follows. Attimet = 1,2,...,¢:

1. Thelearner formulates an estimated value function V.
2. Thecurrent state 7; is observed.

3. Thecurrent reward r; isobserved.

4. Thelearner moves to the next state ;11 .

Thestatesi; and rewardsr; arerandom variablesdefined by thestochastic process described
above. All expectationsin this section are with respect to thisrandom process.

Theorem 4, the main result of this section, gives a bound for TD*(1) on the average
expected sguared distance of W to the correct values V;. Specifically, we show that

%é]@ (v -vi?] <0 (%)

for some setting of the learning rate, and given certain benign assumptions about the
distribution of rewards. Notethat E [(Wt - Vit)z] istheexpected squared distance between

the t*" estimate W and the true value function V; where the expectation is with respect to
the stochastic choice of thet'" state 7,. Thus, the states more likely to be visited at step
t receive the greatest weight under this expectation. Theorem 4 states that the average of
these expectations (over thefirst ¢ time steps) rapidly dropsto zero.

We apply TD*Agl) to this problem in the most natural manner. We define the observation
vector x; € R to have a 1 in component ¢;, and 0 in all other components. (The
generdization to other state representations is straightforward.) We then execute TD* (1)
using the sequence x1, r1, X2, 2, . . ., X¢, r¢ Where these are random variables defined by
the Markov process.

The estimated value function V! is computed as follows: Recall that TD*(1), at each
time step ¢, generates an estimate y, of the discounted sum y; = ZZOIO ¥ 71 %. Notethat
if wearein state ¢ at timet, then the expected value of y; isexactly V;, i.e,

Ely: | i =1 = Vi.

So it makes sense to use the estimate y; in computing the ¢** val ue-function approxima-
tion V!

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 17

A minor difficulty arises from the fact that g, is computed after x; is observed (and
therefore after i, is observed), but f/f must be computed for al states ¢ before i; is
observed. However, if we fix the history prior to tria ¢, then g, is afunction only of x;,
which inturnisdetermined by i;. Therefore, for each state 7, we can precompute what the
valueof g; will beif i; turnsout to be i. Wethen define W to bethisvalue. Notethat, with
this definition, the estimate g, computed by TD* (1) once ¢, isobserved isequal to Vft

We now state and prove our convergence theorem. For this result, we assume a finite
upper bound both on the value function and on the variance of the sum of discounted
rewards.

TuEOREM 4 Supposethe Markov processis such that, for all ¢, |V;| < V and

. 2
B [(kamk—%) iy =i
k=0

for finiteand known 1 and R.
Supposethat TD*(1) is executed as described above with w, = 0 and learning rate

_ VVN
TS e VR

where J = V/N(1 4 7)/(1 —). Then

1<) R J?
Z;E[(Vzﬁ—vm)z] SQJJ;‘F e

<R (15)

Proof: From Eq. (14), ||X}|| < 1/(1 —) sowechoose X; = 1/(1 —+). Letu besuch
that w; = V;. Then ||u|| < U whereU = V/N. Findly,let K = R(. Our choicefor 5 is
identical to that in Theorem 2 where the appropriate substitutionshave been made.

Note that

N oo .
E[(yt—Vit)z]:pr[itzi]'E[(Z’Yk?“t+k—W) |4 =i
i=1 k=0

by the assumptionin Eqg. (15). Thus, becauseu - x; = V;,,

<R

4 4

E[Lf(u,9)] =) Elu-xi—y)] => E[Vi—w)’] <R(=K.

t=1 t=1

Taking expectations of both sides of the bound in Lemma 1, we have that

< bE [L:(u, S)] + [[u— w1 |?

B [L4(TD" (1), 9)] G

18 R. E. SCHAPIRE AND M. K. WARMUTH

forany b > 0 for which C > 0. Therefore, by aproof identical to the proof of Theorem 2
(except that we assume only that L*(u, S) is bounded by K in expectation), we have

E[L4(TD*(1),5)] < E[L(w,9)] + 2VE(1 +7)UX1 + (1 +7)%||u|>X,%.(16)

Sinceu - x; = V;,, g = V;', and E [y, | i:] = V;,, it can be verified that

Bl 50— (v x)) = B[V, - V)7

The theorem now follows by averaging over all time stepst¢ and combining with Eq. (16).
|

Unfortunately, we do not know how to prove a convergence result similar to Theorem 4
for TD*(A) for general A. Thisis because thisproof techniquerequires aworst-case bound
inwhich theterm L*(u, S) appears with a coefficient of 1.

Of course, Theorem 4 represents a considerable weakening of the worst-case results
presented in Section 4. These worst-case bounds are stronger because (1) they arein terms
of the actual discounted sum of rewards rather than its expectation, and (2) they do not
depend on any statistical assumptions. Indeed, the generaiity of the results in Section 4
alows usto say something meaningful about the behavior of TD* () for many similar but
more difficult situations such as when

o there are avery large or even an infinite number of states (a state can be any vector
inkM).

e some states are ambiguously represented so that two or more states are represented by
the same vector.

¢ theunderlying transition probabilitiesare allowed to change with time.

e each transitionis chosen entirely or in part by an adversary (as might be the case in a
game-playing scenario).

7. Algorithm for the batch model

In the usual supervised learning setting, the on-line learning proceeds as follows: In each
trial t > 1 thelearner receives aninstance x; € Y. Then, after producing a prediction ¢,
it gets areinforcement y, and incursloss (7 — y:)?.

A classica agorithm for this problem is the Widrow-Hoff algorithm. It keeps a linear
hypothesisrepresented by the vector w, and predictswith ¢, = w; - x;. The weight vector
isupdated using gradient descent:

Wipl = Wy — 277t(Wt c Xy — yt)xt~

Notethat 2(w; - x; — y:)x; isthe gradient of theloss (w; - x; — y;)? with respect to w;.

There is a straightforward generalization of the above scenario when more than one
instanceisreceived in each trial ¢. In thisgeneralization, the learner does the followingin
each trial:

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 19

1. recelves area-vaued matrix M; with NV columns;
2. computes apredictiony,;

3. gets reinforcement y;; both y, and y, are real column vectors whose dimension is
equal to the number of rows of My;

4. incursloss||y; — y:||%

The rows of the matrix M; can be viewed as a batch of instances recelved at trial ¢. The
algorithm hasto predict on al instances received intrial ¢ beforeit gets the reinforcement
vector y; which contains one reinforcement per row. For each instance, the agorithm
is charged for the usua sguare loss, and the loss in trial ¢ is summed over al instances
received in that trial.

The agorithm we study, called WHM, is a direct generdization of the Widrow-Hoff
algorithm and was previoudly analyzed in the noise-free case by Cesa-Bianchi, Long and
Warmuth (1993), The learner maintains a weight vector w; € R" and, on each trial ¢,
computes its prediction as

Vi = Mywy.
After receiving reinforcement y., the weight vector is updated using therule
Wipl = Wy — QUtMtT(MtWt - Yt)~

Note that the Widrow-Hoff agorithm is a special case of WHM in which each ma-
trix M, contains exactly one row. Also, the update is standard gradient descent in that
2M7 (M;w; — y;) isthe gradient of theloss ||M,w; — y.||> with respect to w;.

To model aparticular reinforcement learning problem, we have the freedom to make up
the matrices M; and reinforcements y, to suit our purpose. For example, Sutton (1988)
and others have considered amodel in which thelearner takes arandom walk on aMarkov
chain until it reaches aterminal state, whereupon it receives some feedback, and starts over
with a new walk. The learner’s goal is to predict the final outcome of each walk. This
problemisreally aspecia case of our model in which welet M, contain theinstances of a
runand set y; = (2, -, 2)%, where z; isthe reinforcement received for the ¢*® run. (In
this case, Sutton shows that the Widrow-Hoff algorithm is actually equivalent to aversion
of TD(1) in which updates are not made to the weight vector w; until thefina outcomeis
received.)

Anexampleisapair (M., y:), and, asbefore, weuse S to denote a sequence of examples.
Wewrite L¢(A, S) to denote the total |oss of algorithm A on sequence S:

4
LZ(Aa S) = Z(f’t - yt)za
t=1

where ¥, isthe prediction of A inthe*" trial, and ¢ is the total length of the sequence.
Similarly, thetotal loss of aweight vector u € " isdefined as

20 R. E. SCHAPIRE AND M. K. WARMUTH

L (u, S) = Z(Mtu —y)?.

t=1

The proof of the following lemma and theorem are a straightforward generalization of
the worst-case analysis of the Widrow-Hoff agorithm given by Cesa-Bianchi, Long and
Warmuth (1993). In the proof, we define, || M ||, the norm of any matrix M, as

[IM]| = max [[Mx]|.
l1xl|=1

For comparison to the resultsin thefirst part of this paper, it isuseful to notethat || M|| <
X +/m where m isthe number of rowsof M, and X isan upper bound on the norm of each
row of M.

For any vector x, we writex” to denote x” x.

LEMMA 2 Let (M, y) beanarbitrary example such that ||M|| < M. Let s and u be any
weight vectors. Let b > 0, and let thelearning rate be

1
T (MIE+ 1/8)

Then

[IMs — y[|* < (MZb+ 1)[[Mu = y[|* + (M? + 1/b)([Ju = s|]* = [[u — w]]?),
(17)

where w = s — 2pM7 (Ms — y) denotes the weight vector of the algorithm WHM after
updating its weight vector s.

Proof: Lete:=y — Ms ande, := y — Mu. Theninequality (17) holdsif
fo=lu—w|? = |Ju—s||? + 2ne? — be,” < 0.
Sincew = s + 2yM7 e, f can berewritten as

f = —4n(u—s)"'M%e + 4n*||MTe||? + 2ne” — be,”
= —dnle —ey) e+ 477 || M7 e||? + 2ne” — bey”
= —2e’ 4+ 4ne T e +4p* || MTe||? — be, 2.

Since 2e,"e < %euz + 2Le? and since |[M”e|| < ||[M]|||e||, we can upper bound f by
e’ (=2 + 4n*(|IM]||* + 1/b)) = 0.
|

THEOREM 5 Let .S be any sequence of examples and let M bethe largest norm || M| |.
If the matrix algorithmWHM uses any start vector s and learning rates

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 21

1
T (M P+)
then we have for any vector u the bound
L(WHM, 5) < 2(L*(u, 5) + M?||s = ul[?). (18)

Assume further that we know bounds K and U/ such that for someu wehave L (u, S) < K
and ||s — u|| < U. Then for thelearning rates

U

m=n= -
t 2(|IML[[2U + MVE)

we have
LYWHM, S) < Lf(u, S) + 2MUVE + M?||s — ul|*. (19)

Proof: Assume that

1
T (M + 1/0)

for some b > 0 to be chosen later. By summing theinequality of Lemma 2 over all runs of
S we get

LY(WHM, S) < (bM? + 1)L (u, S) + (M? + 1/b)([Ja = s[]* — |Ju— w'[*),

=

where w’ is the weight vector after the last reinforcement of S is processed. Since
[lu—w’||> > 0, we have

LYWHM, S) < (bM? + 1)L (u, S) + (M? 4+ 1/b)|[u — s

Now setting b = 1/M? gives the choice of 5 in thefirst part of the theorem and so yields
the bound in Eq. (18).
Assuming further that L*(u, S) < K and ||s — u|| < U, we get

LY(WHM, S) < L(u, S) + M?||s — u||* + bKM* + U?/b. (20)

The part of the right hand side that depends on b is bK M2 + U2 /b which is minimized
when b = U/(M~/K). Using thisvalue of b in Eq. (20) gives the desired choice of 5 and
the bound in Eq. (19).]

In the specia case that K = 0, setting n; = 1/(2||M,||?) givesabound of
LYWHM, S) < Lf(u, S) + M?||s — u||?.

Note that to prove this, b = oo isused. The bound for X' = 0 was previously proved by
Cesa-Bianchi, Long and Warmuth (1993). An aternate proof of the above theorem via
a reduction from the corresponding theorem for the original Widrow-Hoff agorithm was
recently provided by Kivinen and Warmuth (1994).

Thefollowinglower bound showsthat the bounds of the above theorem are best possible.

22 R. E. SCHAPIRE AND M. K. WARMUTH

THEOREM 6 Let Nym > 1, K,U > 0and M > 0. For every prediction algorithm A
there exists a sequence S consisting of a single example (M, y) such that the following
hold:

1. Misanm x N matrixand |[M|| = M;
2. K =min{L(u,S) : |Ju|| < U}; and

3. LYA,S)> K+ 2UMVK + U*M?,

Proof: Asinthe proof of Theorem 3, we prove theresult inthe case that N = 1, without
loss of generality. Thus, M isactually a column vector in R™,

L et each component of M beequal to M /+/m sothat |[M|| = M. Let each component of
y beequal to sz wherez = (MU ++/K)//m and s € {—1,41} ischosen adversariadly
after A has madeitspredictiony = (91,...,9m)’ .

To see that part 2 holds, let u = u be avector (scalar, redly). Then

L, $) = [Mu— | = m(Mu//im - s2)°

which is minimized when u = sU for |u| < U. Inthiscase, L‘(u, S) = K.
Finally, by choosing s adversarialy to maximize algorithm A’sloss, we have

LA, S) =)i — 52)°
() se{H—lell,)i-uZ:;(y 52)
1 < ~ 2 2
2 5 2 (== e))
> > 2= K +2MUVKE + MU,

8. Discussion

The primary contribution of this paper isthe analysis of some simple temporal-difference
algorithmsusing aworst-case approach. This method of analysisdiffersdramatically from
the statistical approach that has been used in the past for such problems, and our approach
has some important advantages.

First, the results that are obtained using the worst-case approach are quite robust. Ob-
vioudly, any analysis of any learning algorithmisvalid only when the assumed conditions
actualy hold in the rea world. By making the most minimal of assumptions — and, in
particular, by making no assumptions at all about the stochastic nature of the world — we
hope to be able to provide analyses that are as robust and broadly applicable as possible.

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 23

Statistical methods for analyzing on-line learning agorithms are only necessary when
worst-case bounds cannot be obtained. In this paper, we demonstrated that temporal-
difference learning agorithms with simple linear models are highly amenable to worst-
case analysis. Although one might expect such a pessimistic approach to give rather weak
results, we have found, somewhat surprisingly, that very strong bounds can often be proved
even in the worst case.

Worst-case bounds for on-line linear learning agorithms can be very tight even on
artificial data (Kivinen & Warmuth, 1994). Good experimental performance of aparticular
algorithmmight be seen asweak evidencefor showingthat thealgorithmisgood sinceevery
algorithm performs well on some data, particularly when the datais artificial. However, if
we have a worst-case bound for a particular algorithm, then we can use experimenta data
to show how much worse the competitors can perform relative to the worst-case bound of
the agorithm in question.

Another strength of the worst-case approach is its emphasis on the actual performance
of the learning algorithm on the actually observed data. Breaking with more traditional
approaches, we do not analyze how well the learning agorithm performs in expectation,
or how well it performs asymptotically as the amount of training data becomes infinite, or
how well the algorithm estimates the underlying parameters of some assumed stochastic
model. Rather, we focus on the quality of thelearner’s predictions as measured against the
finite sequence of datathat it actually observes.

Finally, our method of analysis seems to be more fine-grained than previous approaches.
As a result, the worst-case approach may help to resolve a number of open issues in
temporal -difference learning, such as the following:

e Whichlearning rules are best for which problems? We use the total worst-case loss as
our criterion. Minimizing this criterion led us to discover the modified learning rule
TD*(}). Unlikethe original TD(), thisrule has a gradient descent interpretation for
general A. Our method can aso be used to derive worst-case bounds for the original
rule, but we were unable to obtain bounds for TD(A) stronger than those given for
TD*(A). Itwill be curious to see how the two rules compare experimentally.

Also, the results in Section 4 provide explicit worst-case bounds on the performance
of TD*(0) and TD*(1). These bounds show that one of the two agorithms may or
may not be better than the other depending on the values of the parameters X, K, etc.
Thus, using a priori knowledge we may have about a particular learning problem, we
can use these boundsto guide us in deciding which a gorithmto use.

e How should alearning algorithm'sparameters betuned? For instance, we have shown
how the learning rate » should be chosen for TD*(0) and TD* (1) using knowledge
which may be available about a particul ar problem. For the choice of A, Sutton showed
experimentally that, in some cases, the learner’s hypothesis got closest to the target
when A is chosen in (0, 1) and that there is clearly one optimal choice. So far, our
worst-case boundsfor TD* () arenotin closed formwhen A € (0, 1), but, numericaly,
we have found that our results are entirely consistent with Sutton’sin thisregard.

¢ How does the performance of a learning algorithm depend on various parameters of
the problem? For instance, our boundsshow explicitly how the performance of TD* ()

24 R. E. SCHAPIRE AND M. K. WARMUTH

degrades as v approaches 1. Furthermore, the lower bounds that can sometimes be
proved (such as in Section 5) help us to understand what performance isbest possible
as afunction of these parameters.

Open problems. There remain many open research problemsin thisarea. The first
of these is to reduce the bound given in Lemma 1 to closed form to facilitate the optimal
choiceof A € [0, 1]. However, asclearly indicated by Fig. 2, even when A and) are chosen
S0 as to minimize this bound, there remains a significant gap between the upper bounds
proved in Section 4 and the lower bound proved in Section 5. This may be a weakness
of our analysis, or thismay be an indication that an a gorithm better than either TD(A) or
TD*(X) iswaiting to be discovered.

So far, we have only been able to obtain results when the comparison class consists of
linear predictors defined by a weight vector u which make predictions of the form u - x;.
It is an open problem to prove worst-case loss bounds with respect to other comparison
classes.

As described in Section 3, TD*() can be motivated using gradient descent. Rules
of this kind can aternatively be derived within a framework described by Kivinen and
Warmuth (1994). Moreover, by modifying one of the parameters of their framework, they
show that update rules having a quditatively different flavor can be derived that use the
approximation of the gradient V., (y: — 9:)? in the exponent of a multiplicative update.
(Note that the TD(A) update is additive.) In particular, they analyze such an agorithm,
which they call EG, for the same problem that we are considering in the special case that
v = 0. Although the bounds they obtain are generaly incomparable with the bounds
derived for gradient-descent algorithms, these new agorithms have great advantages in
some very important cases. It is straightforward to generalize their update rule for v > 0,
but the analysis of the resulting update rule is an open problem (although we have made
some preliminary progressin thisdirection).

Lastly, Sutton’sTD(\) algorithm canbeviewed asaspecia case of Watkin's“ @)-learning”
algorithm (1989). This algorithm is meant to handle a setting in which the learner has a
set of actionsto choose from, and attemptsto choose its actions so as to maximize its total
payoff. A very interesting open problem is the extension of the worst-case approach to
such a setting in which the learner has partial control over its environment and over the
feedback that it receives.

Acknowledgments

We are very grateful to Rich Sutton for his continued feedback and guidance. Thanks also
to Satinder Singh for thought-provoking discussions, and to the anonymous referees for
their careful reading and feedback.

Manfred Warmuth acknowledges the support of NSF grant IR1-9123692 and AT& T Bell
Laboratories. Thisresearch was primarily conducted while visiting AT& T Bell Laborato-
ries.

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 25

Appendix

In this technical appendix, we complete the proof of Lemma 1 by bounding p(M), the
largest eigenvalue of the matrix M.
Let T bethe? x ¢ identity matrix, and, for ¢, j > 0, define

S, = Z,+27,
R, = Z!Z;,
P = Z]Z; + 7] Z;.
Since Z; isthe zero matrix for ¢ > ¢, we can rewrite V more conveniently as
V=> (70)Z:.
i>0
By direct but tedious computations, we have that
DD =1—-+S; ++’Ry,
and
VD =1+ (1 - %) ;(yx)izi

sinceZ;Z, = Z;4, fori > 0. Also,

) SN R+ Y (NP

i>1 j>i>1

(YA)'S;.

D'VI'VD = 1+ (1—

+
TN

—

|
> =
D
v
A

Thus, M can be written as:

2 2
(772)(,\2 —2n+ %) I 7

—? X0y + (77 — 7) y(1 - A)) S1+ 72X\ Ry

+
TN

—

|

> =
N—
TN

@|3M

|
- +
Y, i
[3v]

~

=2

P

~=

n

%

(=) S 3 e,

i>1 j>i>1

Itisknownthat p(A + B) < p(A) + p(B) for real, symmetric matrices A and B. Further,
it can be shown (for instance, using Eq. (10)) that

p(I) = 1;
p(R;) < 1
p(£S:) < 2
p(Pij) < 2

26 R. E. SCHAPIRE AND M. K. WARMUTH

Applying these bounds gives that

b

> ()

i>32

+% (1 — %) SN +2 Y ()

i>1 j>i>1

2 2
p(M) < 9°X,* —2n+ % +2 ‘ (77 — 77—) (1 =X) = > X3y |+ 97 X2
2

Notes

1. Inthis paper we only use one vector norm, the Ly-norm: |[u]| = 4 /Zf‘\; u?.

2. In some versions of TD(), this difficulty is overcome by replacing ¢:4+1 = W41 - X¢41 in the update
rule (4) by the approximation w - X;41.

3. Thefactor of two in front of ; can be absorbedinto 7;.

4. If N > 1, we canreduceto the one-dimensional case by zeroing all but one of the componentsof X ;.

References

Nicold Cesa-Bianchi, Philip M. Long, and Manfred K. Warmuth. Worst-case quadratic loss bounds for a
generalization of the Widrow-Hoff rule. In Proceedingsof the Sixth Annual ACM Conferenceon Computational
Learning Theory, pages 429-438, July 1993.

Peter Dayan. The convergenceof T°D () for general X. MachineLearning, 8(3/4):341-362, May 1992.

Peter Dayan and TerrenceJ. Sejnowski. 7'D () convergeswith probability 1. MachineLearning, 14(3):295-301,
1994,

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

Tommi Jaakkola, Michael |. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative dynamic
programming algorithms. Technical Report 9307, MIT Computational Cognitive Science, July 1993.

Jyrki Kivinen and Manfred K. Warmuth. ~ Additive versus exponentiated gradient updates for learning linear
functions. Technical Report UCSC-CRL-94-16, University of California Santa Cruz, Computer Research
Laboratory, 1994.

Richard S. Sutton. Learningto predict by the methodsof temporal differences. MachineLearning, 3:9-44, 1988.

C. J. C. H. Watkins. Learning fromdelayed rewards. PhD thesis, University of Cambridge, England, 1989.

