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The notion of a boosting algorithm was originally introduced by Valiant in the
context of the “probably approximately correct” (PAC) model of learnability [19].
In this context boosting is a method for provably improving the accuracy of any
“weak” classification learning algorithm. The first boosting algorithm was invented
by Schapire [16] and the second one by Freund [2]. These two algorithms were
introduced for a specific theoretical purpose. However, since the introduction of
AdaBoost [5], quite a number of perspectives on boosting have emerged. For in-
stance, AdaBoost can be understood as a method for maximizing the “margins”
or “confidences” of the training examples [17]; as a technique for playing repeated
matrix games [4, 6]; as a linear or convex programming method [15]; as a functional
gradient-descent technique [8, 13, 14, 3]; as a technique for Bregman-distance op-
timization in a broader framework that includes logistic regression [1, 10, 12]; and
finally as a stepwise model-fitting method for minimization of the exponential loss
function, an approximation of the negative log binomial likelihood [7]. The current
papers add to this list of perspectives, giving a view of boosting that is very differ-
ent from its original interpretation and analysis as an algorithm for improving the
accuracy of a weak learner. These many different points of view add to the richness
of the theory of boosting, and are enormously helpful in the practical design of new
or better algorithms for machine learning and statistical inference.

Originally, boosting algorithms were designed expressly for classification. The
goal in this setting is to accurately predict the classification of a new example.
Either the prediction is correct, or it is not. There is no attempt made to estimate
the conditional probability of each class. In practice, this sometimes is not enough
since we may want to have some sense of how likely our prediction is to be correct,
or we may want to incorporate numbers that look like probabilities into a larger
system.

Later, Friedman, Hastie and Tibshirani [7] showed that AdaBoost can in fact
be used to estimate such probabilities, arguing that AdaBoost approximates a form
of logistic regression. They and others [1] subsequently modified AdaBoost to ex-
plicitly minimize the loss function associated with logistic regression, with the in-
tention of computing such estimated probabilities. In one of the current papers,
Zhang vastly generalizes this approach showing that conditional probability esti-
mates P{y|x} can be obtained when minimizing any smooth convex loss function,
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not just exponential loss or negative log binomial likelihood. Moreover, he relates
the loss to a specific Bregman distance between the true conditional probability and
its estimate. This fascinating result leads one to wonder how special the exalted log
likelihood loss function really is for this task when apparently any convex function
will do.

It seems that most if not all of the consistency results in these papers depend
on the ability of boosting-like methods to estimate probabilities. That is, this work
tends to divide the inference process into two steps: (1) estimate the conditional
probability of y given x, and (2) use this estimate to make a prediction, for example,
select the class with highest estimated conditional probability. Although, as noted
above, this can be very useful in some applications, in other cases, we really are only
interested in being able to make accurate predictions with no opportunity to hedge
with a probability estimate. In this case, there is no need to estimate conditional
probabilities. Such estimates are in no way necessary for classification. For instance,
such estimates are not used when analyzing boosting in terms of the margins of the
training examples [11, 17], nor in the theory of support-vector machines [20]. It is
perhaps inevitable in the quest for consistent learning algorithms that we end up
thinking about conditional probability estimates. But if the goal is classification
accuracy, then we may be seeking something that is more than we really need.
This is Vapnik’s basic message: don’t try to estimate probabilities (or conditional
probabilities) if your goal is classification; simply try to minimize the empirical error
and use uniform convergence bounds to estimate the out-of-sample performance.

These three papers also all seem to require an assumption of the denseness of
the estimating class. Again, if the goal is consistency, then such an assumption
seems unavoidable. Unfortunately, this can be a rather strong assumption. For
instance, using decision stumps apparently does not satisfy the denseness require-
ment. Decision trees probably do satisfy this requirement, but there is no efficient
method for provably finding the best decision tree on a given dataset. Denseness
means that the approximating class must be very rich, rich enough to approximate
nearly any function. Lacking additional assumptions it seems that this precludes
the possibility of inferring the label of any instance that is not in the training set.
Thus, the need for regularization. This unfortunately adds a degree of complexity
to the practical application of these algorithms. Moreover, AdaBoost usually seems
to work fine without regularization, bringing into question its necessity (though
raising the possibility of it benefiting from its use).

In most applications, we know full well that the true distribution is far from any
distribution in our class. For example, nobody using HMM’s for speech analysis
really thinks that speech can be synthesized by these HMM’s. Are there other modes
of analysis that do not require such strong assumptions? Given a “reasonable” class,
but one that does not admit zero approximation error, what can be said about how
well these algorithms perform?

Although interesting and important, the analyses given in these papers do not
seem to offer insight as to why boosting and support-vector machines are effective in
higher dimensions, a phenomenon that is perhaps better captured by the respective
margins theories. Consistency does not seem to be related to the effectiveness of
an algorithm in high dimensions. For instance, k-nearest neighbor algorithms are
known to be consistent, but are also known to suffer considerably from the curse of
dimensionality [9].
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Both Zhang and Lugosi and Vayatis carry out their analysis only with regard
to the loss function that they are studying. In other words, they do not consider at
all the algorithm that is used to minimize that loss function. However, in studying
a learning algorithm like AdaBoost, the loss function alone cannot tell us the whole
story. For instance, suppose the data is linearly separable so that there exists a
set of weights w1, . . . , wN and a set of base classifiers g1, . . . , gN such that, for each
training example (xi, yi),

yi

∑

j

wjgj(xi) > 0,

i.e., yi is equal to the sign of f(xi) =
∑

wjgj(xi). AdaBoost attempts to minimize
the exponential loss

∑

i

exp(−yif(xi)).

Clearly, if we multiply each weight wj by a large positive constant c, then this
loss will quickly be driven to zero. Thus, the fact that AdaBoost minimizes the
exponential loss only tells us that it finds a separating hyperplane (with which it
can drive the exponential loss to zero). It does not tell us anything about which

hyperplane was selected, and it is well known that we can expect some hyperplanes
to be much better than others (witness the success of support-vector machines). So
it is not enough to look only at the loss function — we also need to consider the
mechanics of the specific algorithm that is being used.

Exponential loss is in terms of the unnormalized margin yf(x), whereas the
margins theory [17] is about the normalized margin (in which we divide f by the
sum of the weights of the base classifiers). In the example of linearly separable data
above, minimizing exponential loss implies maximizing the unnormalized margins
by forcing all of them to approach (positive) infinity. As noted above, this tells
us nothing about which separating hyperplane was selected. On the other hand,
AdaBoost is known to approximately maximize the normalized margins, a property
that does very strongly constrain the separating hyperplane that is selected, and
that, it can be argued, goes far in explaining why boosting is more effective than
choosing just any old hyperplane.

The comments in Section 6 of Lugosi and Vayatis are quite amusing. It has
previously been observed that intuitively AdaBoost and other boosting algorithms
attempt to force the weak classifiers to behave as if they were independent. Indeed,
Lugosi and Vayatis’s comments can be generalized to the case where the weak
classifiers are not independent: In this case, if the t-th weak classifier ht has error
p on the distribution Dt on which it was trained (which will automatically be true
if they are independent as in the Lugosi and Vayatis paper) then the error L(f) of
the resulting combined classifier will again be

(

2
√

p(1 − p)

)N

.

In fact, there is another boosting algorithm, called the boost-by-majority algo-
rithm [2], that gives a bound on the error that is not a Chernoff bound, but is
instead an exact binomial tail:

N/2
∑

i=0

(

N

i

)

pN−i(1 − p)i.
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Understanding the properties of this algorithm in the frameworks employed in these
papers would certainly be an interesting challenge.

More broadly, all this points to a strong connection between probability theory
and game theory. This is spelled out beautifully by Schafer and Vovk [18].
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