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Boosting with Prior Knowledge for
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Abstract— ification of boosting that combines and balances human exper-

The use of boosting for call classification in spoken languay tise with available training data. We aim for an approach that
understanding is described in this paper. An extension 10 #4155 the human's rough judgments to be refined, reinforced
AdaBoost algorithm is presented that permits the incorporaion d adiusted by the statisti f the training data. but | i
of prior knowledge of the application as a means of compensat and adjusted by the statistics of the training data, but in a man
ing for the large dependence on training data. We give a conve Ner that does not permit the data to entirely overwhelm human
gence result for the algorithm, and we describe experimentsn judgments.
four datasets showing that prior knowledge can substantidy im- Prior knowledge may be acquired from several sources, e.g.,
prove classification performance. human judgment, application guidelines and manuals, world
knowledge, and in-domain website. In fact while developing
a spoken dialogue system designers do have access to one or
more such sources of knowledge. Designers use these sources

_Building robust natural-language understanding for spokepr knowledge to deduce information crucial for the develop-
dialogue applications such as those for automated CUStOmRfInt of the dialogue system, i.e., the functionalities to support,
care [8] and help desks [S] presents several technical chghy 5 basic understanding of how users may interact with the
lenges: (1) the need farccuratelarge-vocabulary recognition gppjication. It would be only prudent, therefore, to also use
to accommodate for the variety of input requests, (2) parsifigese sources of knowledge for bootstrapping the text catego-
and understanding users’ requests, and (3) supporting mixgdation module needed for the natural language understanding,
initiative and conversational dialogue. The spontaneous in%ecially when data is limited.
and language variation for these sets of applications present magg 4 example, prior knowledge allows us to encode rules

jor challenges to both speech recognition and language Unq@ky can classify user responses to confirmation questions like:

standing. o “So you want to fly from Boston to New York on Sunday
Creating robust natural language systems is highly depeéi,-ening?” A User response containing “yes”, “okay”, “correct’,

dent on the availability of data for training the recognition and,), right”, “fine”, etc. is highly indicative of a positive confir-
understanding models. In this paper, we consider the tasl;;

of extracting the meaning of a user’s request as a multi-label.i.
classification problem. We investigate the use of Freund a[ig
Schapire’'s AdaBoost algorithm [6] which combines many Sin?ﬁ
ple and moderately accurate categorization rules that are trai

I. INTRODUCTION

he basic idea of our approach is to modify the loss function
ed by boosting so that the algorithm balances two terms, one
easuring fit to the training data, and the other measuring fit to

respect, our method turns out to be similar to one suggested by

Like many machine-learning methods, the AdaBoost alg9.'azzani and Billsus [12] for modifying the naive Bayes algo-

rithm is entirely data-driven in the sense that the classn‘lerriihm to incorporate prior knowledge.

generates is derived exclusively from the evidence present e allow orior knowledae that mav be of anv form that pro-
the training data itself. This can be a problem since it means P 9 Y y P

i : i ides guesses, however rough, of the conditional probability of
that spoken dialogue systems or new functionalities cannot he - .
. - class labels for each training example. We include one example
deployed until sufficient real data has been collected. . . A
. of how such a model can be easily built for text categorization
In this paper, we explore the use of human-crafted knowledge

to compensate for the lack of data in building robust cIassifiers.SkS from human-chosen keywords.

In its standard form, boosting does not allow for the direct in-, Ourapproachiis based on the boosting-style algorithm for lo-

corporation of such prior knowledge. We describe a new mogi'—StiC regression described by Collins, Schapire and Singer [2],

and we use their results to prove a simple convergence theorem

R. Schapire conducted this research while with AT&T Labsd &1 now for our algorithm. Although presented only in the boosting set-
with Princeton University, Department of Computer Scigerg®Olden Street, ting, our general technique for incorporating prior knowledge

Princeton, NJ 08544 USA (email: schapire@cs.princetar).ed . . . ;
M. Rochery conducted this research while visiting AT&T Labaed is now can be combined with any method based on |Og|StIC regression.

with Ariana, INRIA, 2004 Route des Lucioles BP 93, 06902 Sapkntipolis We present several experiments using boosting on both

cedex, France (email: marie.rochery@sophia.inria.fr). speech and text corpora. We describe experiments on datasets
M. Rahim and N. Gupta are with AT&T Labs Research, Shann_on -Lab-derived from two spoken-dialogue applications We also
oratory, 180 Park Avenue, Florham Park, NJ 07932 USA (erfaiazin, p g pp .

nguptg @research.att.com). present results on two text-based benchmark datasets. In each



case, we compare boosting with and without prior knowledgeput: (z1,41), - . ., (Tm, Ym)
The results show that prior knowledge can substantially im-  wherex; € X, y; € {—1,+1}
prove performance, particularly when data is greatly limited. fort = 1,... 7"

o let

Wt(l) = !

1+exp (yi Zi;ll g (iCz))
We assume that we are given a set of training examples . . .

o110 (o) st s Galod snsance nons -+ 122 S90S ocuanuase reton KR on
paper, each:; will generally be the text of a transcribed or five function" J
recognized utterance; however, in generaliay incorporate ' W (i)e—vihe (@) 5
other information about what was spoken, or more generally, Z t(i)e (2)
about whatever the object is that is to be classified. Eadh !
the label or classassigned to the instanag; for instancey; _ B T
may indicate call type. For simplicity, we assume for now th&utput final classifiery () = Z ha ()
there are only two classes;1 and+1. Let X and) be the t=1
spaces of all possible instances and all possible labels, respgég-1. A binary boosting algorithm.
tively. Thus, for now)y = {—1,+1}. When discussing proba-
bilities, we assume that all training and test exampleg) are

1)

Il. BOOSTING ANDLOGISTICREGRESSION

we can attempt to fing by maximizing the conditional likeli-

selected independently from some distributron X' x ). d O )

) . . 7 ood of the data, or equivalently, minimizing the negative log
The goal of a learning algorithm is to use the training data . : - .

conditional likelihood which works out to be

to derive a rule that accurately predicts the class of any new
instancer; such a prediction rule is called dassifier The el
approach that we take is based on a machine-learning method Zln (1 -+ exp(=y:f(@:))). ®)
calledboosting6], [13]. The basic idea of boosting is to build a
highly accurate classifier by combining many “weak” or “sim- A connection between boosting and logistic regression was
ple” base classifierseach one of which may only be moderatelyirst suggested by Friedman, Hastie and Tibshirani [7], and was
accurate. To obtain these base classifiers, we assume we Haxt@er explored by Duffy and Helmbold [4]. Along these same
access to hase learning algorithnthat we use as a black-boxlines, Collins, Schapire and Singer [2] describe a variant of
subroutine. Freund and Schapire’s [6] AdaBoost algorithm for minimizing
The collection of base classifiers is constructed in roundsq. (3) over functionsf that are linear combinations of base
On each round, the base learner is used to generate a bdsmctions. Pseudo-code for the algorithm that we use, which
classifierh;. Besides supplying the base learner with traininge call AdaBoost.L, is shown in Fig. 1. This algorithm is the
data, the boosting algorithm also provides a set of nonnegatsame as that of Collins, Schapire and Singer except in the man-
weightsiV; over the training examples. Intuitively, the weightsier in which base functions, are chosen on each round; our
encode how important it is that correctly classify each train- algorithm is essentially a confidence-rated version of theirs.
ing example. Generally, the examples that were most oftenLike AdaBoost, AdaBoost.L works in rounds. On each
misclassified by the preceding base classifiers will be given tr@ind, a set of weightd; (i) over the training set is computed
most weight so as to force the base learner to focus on the “haad-in Eq. (1) and used to find a base functign: X — R.
est” examples. This base function should minimize Eq. (2) over some space of
Following Schapire and Singer [14], we usenfidence-rated base functions. Aftef” rounds, the sum of all thi;’s is output
classifiersh that, rather than outputting simplyl or +1, out- as the final functionf. This procedure is in fact identical to
put a real numbeh(x) whose sign {1 or +1) is interpreted confidence-rated AdaBoost if we instead comgiigi) using
as a prediction, and whose magnitudér)| is a measure of the rule
“confidence.” We refer to these hase functions ) =1
Although our eventual goal is classification, we focus on esti- Wii) = exp | —yi ) har(ws) |-
mating probabilities which can be converted into classifications =t
in the obvious way by thresholding. Specifically, given training
data, we wish to build a rule that estimates the conditional prop- Convergence

ability thaty = +1 givenz when test examplgr, y) is chosen  we can use the results and techniques of Collins, Schapire

according taD. In logistic regression, we do this by building aand Singer [2] to prove the convergence of this algorithm to
real-valued functiorf : X — R and estimating this probability the minimum of Eq. (3), provided the base functions have a

3

by o(f(x)) where particular form so that the spa@é of base functions isemi-
finite, meaning that{ contains a finite set of functior for
o(z) = L . which:
(2) -
14+e72

1) everyfunctionir{ can be written as a linear combination

Later, f will be of a particular form, namely, a linear combina- __ ©f the functions ing, and
tion of base functions. Once such a model has been postulated) @¢ IS inH for everya € R andg < G.



Theorem 1:Assume the base functiohsin Fig. 1 minimize where
Eqg. (2) over a semi-finite spadé. Then asI’ — oo, the loss
in Eq. (3) for the final functiory converges to the infemum of ~RE (P [| ¢) = pIn(p/q) + (1 — p)In((1 —p)/(1 — ¢))

this loss over all linear combinations of functiongt o . Lo
) . : . is binary relative entropy. The relative importance of the two
Proof sketch: Collins, Schapire and Singer [2] proved the con:- .
erms is controlled by the parameter

vergence of their sequential-update algorithm when run with'a_ ... I .
finite set of base functions. Since our algorithm AdaBoost.L is Putting these together, we get the objective function

a confidence-rated variant of theirs, to prove the result, we only Z[ln (1+ exp(—yif ()
need to show that, on each round, AdaBoost.L makes at least as - ’
much progress as their sequential-update algorithm applied to RE (i (23) || o(f (). )

the finite se. In particular, we note that

This can be rewritten as
ZWt(l‘)e—yiht(m) = minZWt(i)e_yih‘(mi)

i C + Z[ln(l + evif(@))
< min Wt(i)efyio‘g(zi) i
aclR,geg = oy (z:) In(1 Jreff(mi))
< T Wilipe = (= m @) (1 4+ el (6)

whereq; and g, are the choices that would have been ma(r/herec is a term that is independent ¢f and so can be dis-
t t i iacti i
by their algorithm. With these additional steps, their proof g garded. Note that this objective function has the same form

. . . as Eq. (3) over a larger set and with the addition of nonnegative
convergence is easily modifiedm

. : : . v¥eights on each term.
The base learning algorithm that we use in our experimen Srhus. to minimize Eq. (6), we apply the AdaBoost.L pro-

for finding base functions is the same as in Schapire and . . : : -
: . . cedure described in Section Il to a larger weighted training
Singer’'s [15] BoosTexter system. These experiments all deadl . . - =
. . set. This new set includes all of the original training examples
with text, and each base function tests for the presence or E¢ -

sence of a particular word, short phrase or other simple patte > vi), €ach with unitweight. In addition, for each training ex-

n
henceforth referred to simply agerm If the term is present, and(zs, — 1) with weightsnrs (z;) and(1 — 7, (1)), respec-

ample(x;,y;), we create two new training examples;, +1)
then one value is output; otherwise, some other value is output, . . .
For instance, the base function might be: “If the word ‘yestjvew' Thus, we triple the number of exampfeSuring train

occurs in the text, then outputl.731, else output-2.171." Ing, these weightay, are now used in computing’; so that

Schapire and Singer [15] describe a base learning algorithm that ) wo(4)
efficiently finds the best base function of this form, i.e., the one Wi (i) = 1 L
minimizing Eq. (2). It can be seen that this space of base func- + exp (yl > o hw (Iz))

tions is semi-finite since there are only finitely many terms a
since a rule of this form can be decomposedig® + a191
whereag, a1 € R andg; (respectivelyg) outputsl if the term
is present (respectively, absent), anotherwise.

rlﬂere,z’ ranges over all of the examples in thewtraining set).
The modification of Theorem 1 for weighted training sets is
straightforward.

One final modification that we make is to add)4h base

function h that is based omr so as to incorporate.. right
[1l. I NCORPORATINGPRIOR KNOWLEDGE .
from the start. In particular, we take

We now describe our modification to boosting to incorpo-
rate prior knowledge. In our approach, a human expert must h o 1 ()
begin by constructing a rule mapping each instanceto an o(@) = 0" (m4(2)) =1n 1—7mq(x)
estimated conditional probability distributiar(y|z) over the _ _ ) ) a
possible label valueg € {—1,+1}. We discuss below some@nd include in computing the final classifief.
methods for constructing such a rule.

Given this background or prior model and training data, w&. Multiclass problems
now have two possibly conflicting goals in constructing a pre- Up until now, we have assumed a binary prediction problem
dictor: (1) fit the data, and (2) fit the prior model. As beforeyith )y = {—1,+1}. More generally, we follow Schapire and
we measure fit to the data using log conditional likelihood aSinger's [14], [15] approach to multiclass problems in which
in Eq. (3). To measure fit to the prior model, for each exanmore than two classes are allowed and furthermore in which
ple z;, we use relative entropy (also called Kullback-Leiblegach example may belong to multiple classes. The intuitive idea
divergence) between the prior model distributiof|z;) and s to reduce to binary questions which ask if each example is or
the distribution over labels associated with our constructed l@-not in each of the classes.
gistic model(f(z;)). More precisely, lettingr,.(z) = 7(y = In particular, suppose that there afe classes) =
+1[z), we measure fit to the prior model by {1,2,...,k}. Each labely; is now a vector in{—1,+1}*

Z RE (my(x;) || o(f(z:))) (4)  'Although, by noticing thatz;, y;) occurs twice, we can actually get away
P with only doubling the training set.



where the/-th componentindicates if the example is or is not in €lass | Keywords |

classt. Our purpose now is to find a functigh: X x ) — R, | japan japan, tokyo, yen _
ando(f(z,¢)) is then the estimated probability that example | 2ush bush, george, president, election |
belongs to clasé. Treating each class separately, the objecti ésrael Lsagflé]r(;;:falem’ peres, sharon, palestinian, is-
function in Eq. (3) becomes britx britain, british, england, english, londoh,
thatcher
sz (1 +e_yiff(%f)), gulf gulf, irag, saudi, arab, iraqi, saddam, hussein,
P kuwait
german german, germany, bonn, berlin, mark
The boosting algorithm AdaBoost.L is modified straightfor- weather weather, rain, snow, cold, ice, sun, sunny, cloydy
wardly: Maintaining weights on example-label pairs, Eq. (1)dollargold dollar, gold, price _
becomes hostages hostages, ransom, holding, hostage
budget budget, deficit, taxes
) 1 arts art, painting, artist, music, entertainment, mu-
Wt(lag) = 1 > seum, theater
1+exp (yil th:1 h (l’ia ﬁ)) dukakis dukakis, boston, taxes, governor
yugoslavia yugoslavia
and Eq. (2) becomes quayle quayle, dan
ireland ireland, ira, dublin
; —yichi (z,0) burma burma
Z Z Wi (i, O)e ) bonds bond, bonds, yield, interest
it nielsens nielsens, rating, tv, tv
As was done by Schapire and Singer [15], our base learpd}oxoffice box office, movie , ,
finds rules that still test for the presence or absence of a tetnickertalk stock, bond, bonds, stocks, price, earnings
but now outputs a whole vector of numbers (one for each class) TABLE |
depending on the result of this test. THE KEYWORDS USED FOR EACH CLASS ON THAP-TitleSDATASET.

Our prior knowledge now gives guessed estimat@r) of
the conditional probability that examplebelongs to clasg.
We do not require that(-|«) be a probability distribution. The

objective function in Egs. (5) and (6) becomes We used two publicly available text categorization datasets

and two proprietary speech categorization datasets. The latter
Z Z[ln(l ey @) datgsets come from the applipation that was the original moti-

— < vation for this work as described in Section I. We chose the
former datasets because they are large, and also because they

HIRE (w(flz) || o(f(2i, 0)))] naturally lent themselves to the easy construction of a human-

= Z Z[ln(l + e~ vief (@,0)) crafted model. We could not use a substantially larger number
il of datasets because of the inherently intensive, subjective and
+nm(l]z;) In(1 + e*f(riv@) non-automatic nature of building such models.

+n(1 — 7(f)2;)) In(1 + eF @) 4 C.
A. Benchmark datasets

So to handle this objective function, similar to the binary case, |, the first set of experiments, we used these two benchmark
we create a new training set with weights over example-lalgk-categorization datasets:
pairs: The original example&:;,y;) occur with unit weight
wo (%, £) = 1. Each such example is replicated twicéas +1)
and(z;, —1) wherel is the all ones vector. Letting+ m and
i + 2m be the indices of the new replicated examples, their
weights are, respectively,

« AP-Titles This is a corpus of Associated Press newswire
headlines [11], [10]. The objectis to classify the headlines
by topic. We used the preparation of this dataset described
by Schapire and Singer [15] consisting of 29,841 examples
and 20 classes.

« NewsgroupsThis dataset consists of Usenet articles col-
lected by Lang [9] from 20 different newsgroups. The ob-

andwo(i +2m,€) = 71 —x(llz)). ject is to predict which newsgroup a particular article was
posted to. One thousand articles were collected for each
newsgroup. However, after removing duplicates, the total
IV. EXPERIMENTS number of articles dropped to 19,466.

In this section, we describe experiments comparing boosting Base learner:We used the same base learner as described
with prior knowledge against boosting with no such knowledgby Schapire and Singer [15]. As described in Section II-A, this
particularly when data is substantially limited. We did not conbase learner searches for base functions that test for the pres-
pare to other text categorization methods, since this was not #ree or absence of a term. In our experiments, we used all pos-
purpose of the study; moreover, Schapire and Singer [15] caible terms which were sequences of up to three words, possibly
ried out extensive experiments comparing boosting to sevewath the middle word matching a “wildcard.” In the multiclass
other methods on text categorization problems. case, if the term is present, a particular set of values is output

wo(i +m,l) = nmw(lla;)



| Class Keywords | 80 ' ' '
alt.atheism god, atheism, christ, jesus, religion, atheist df;g;vliggwéegﬂe —
comp.graphics| graphics, color, computer, computers, plpt, 70 L : d;’ta on|¥ ,,,,, W
screen
comp.os.ms- | computer, computers, operating system, ni- 60 I i
windows.misc | crosoft, windows, ms, dos "%
comp.sys.ibm.| computer, computers, ibm, pc, clone, hardwdre, 50 | : |

pc.hardware

cpu, disk

comp.sys.mac.

computer, computers, mac, macintosh, ha

% error rate

hardware ware, cpu, disk
comp.win- computer, computers, windows, X, unix 20|
dows.x
misc.forsale for sale, asking, selling, price
rec.autos car, drive, fast, jaguar, toyota, ford, honda, volk- 20 ¢
swagen, gm, chevrolet, tire, engine
rec.motor- motorcycle, honda, harley, wheel, engine, thrpt- 10 150 1(;00 10(;00
cycles tle i ) # training examples
rec.sport. baseball, hit, strike, ball, base, bases, homeifun,
baseball uns, out, outs Fig. 2. Comparison of test error rate using prior knowledyddata separatel
rec.sport. hockey, stick, puck, goal, check orgtogether 0?1 thé\P-Titlesdataset, measgrzd as a function of the%umbeyr of
hockey training examples.
sci.crypt cryptography, encrypt, cipher, decrypt, security,

secret, key

sci.electronics | electronics, computer, computers, chip, electric to see how the algorithm performs with prior knowledge that is

e | e, foc, S e sk, cncer] s rough as can be expected n pracice. We began be defing

soc.religion. religion, christian, jesus, christ, god, catholic, the conditional probability of a classgiven the presence or

christian protestant absence of a keyword, denotedr(¢|w) or = (¢|w). We let

talk.politics. guns, gun, nra, brady, kill, shoot, shot ) )

guns (lw) = { 0.9/14 if w is a keyword for

talk.politics. mideast, israel, jordan, arafat, palestinian, sytia, 0.1/(k —n,) otherwise

mideast lebanon, saudi, iraq, iran

talk.politics. politics, clinton, president, congress, sengte, wheren,, is the number of classes listing as a keyword. In

misc congressman, senator ' other words, if the keyword is listed for a single clas&then

talk.religion. re"(?'%n'l_lew'sr" christian, catholic, protestant, seeing the word gives a 90% probability that the correct class

mise god, believe is ¢; if w is listed for several classes, the 90% probability is
TABLE Il divided equally among them. The remaining 10% probability

THE KEYWORDS USED FOR EACH CLASS ON THINeWSQroup®ATASET. is divided equally among all classes not listilngs a keyword.

If w is not present, we assign equal probability to all classes:
7m(¢|w) = 1/k. We also define the prior distribution of classes
to be uniform:z(¢) = 1/k.
by the base function, one for each class; if the term is absentgijyen these rules, we make the naive assumption that the
some other set of values is output. It can be shown, using haghywords are conditionally independent of one another given
tables and manipulation of the loss function, that an efficieffe class. We can then use Bayes' rule to compute the probabil-
search can be employed on each round to quickly find the bggtunderr) of each class given the presence or absence of all
base function of this form minimizing Eq. (2). the keywords. This becomes our estimaté|z).

Prior models: Our framework permits prior knowledge of Experimental set-upFor each dataset and on each run,
any kind, so long as it provides estimates, however rough, W first randomly permuted the data. We then trained boosting,
the probability of any example belonging to any class. Hetgith or without prior knowledge, on the firsk. examples, for
we describe one possible technique for creating such a roygh= 25 50, 100, 200, ..., M, whereM is 12800 forAP-Titles
model. and 6400 foNewsgroupsThe remaining examples (i.e., start-

For each dataset, one of the authors, with access to the jligf with exampleM + 1) are used for testing. We ran each
of categories but not to the data itself, thought up a handful ekperiment ten times and averaged the results. We fixed the
keywords for each class. These lists of keywords are showmiomber of rounds of boosting to 1000. We set the parameter
Tables | and Il. These keywords were produced through an enusing the heuristic formula000m —1-¢ (which was chosen
tirely subjective process of free association with general knowb interpolate smoothly between guesses at appropriate values
edge of what the categories were about (and also the time peddd, for a couple values ofn). This setting conforms to the
during which the data was connected), but no other informatigasic intuition that, when more data is available, less weight
or access to the data. Although this step required direct hunshould be given to the prior knowledge. No experiments were
involvement, the rest of the process of generating a prior modeinducted to determine if better performance could be achieved
was fully automatic. with a wiser choice of;.

We next used these keywords to build a very simple and naive Results: Figs. 2 and 3 show the results of these experi-
model. We purposely used a model that is very far from perfatients. The figures show test error rate for boosting with and



100 . . Prior models: The prior models were built in a similar
datatknowledge fashion to those used in the preceding experiments, although we

o knowledge only -—--—-
N dataonly < 1 gllowed the human more freedom in choosing probabilities, and
o T ] more rules were used. For example, to encode a rule indicating

that a user response containing “yes”, “okay”, “correct”, “all
ol 1 right’, or “fine” is highly indicative of a positive confirmation,

60 | we can define

% error rate

m(YegyesV okayV correctv all right Vv fine) = 0.9,

40 1 that s, the probability of the “Yes” class, given that any of these

keywords were uttered, is 0.9. Another example is for classify-
ing user requests to be connected to an operator/service agent.
This can be expressed by the rule

30

20

100 1000

furaining examples 7w (Agentspeak\ (human/operatov (serviceaagenj)) = 0.95.

e e ANY Probabity “left over” by such a rule s spread over
of training examples. the remaining classes in proportion to their prior probabilities
which we estimated using the available training data. Likewise,
these prior or default probabilities were used when the given
without prior knowledge measured as a function of the nurpyle is not satisfied. As before, the probabilities assigned by
ber of training examples. The figures also show the error ratf various rules are combined using Bayes rule with a naive
achieved using the prior model alone with no training exanhdependence assumption.
ples at all. Here, error rate means fraction of test examples on  Experimental set-upWe performed similar experiments
which the top-scoring label was not one of the correct labes those described in Section IV-A measuring classification ac-
(recall that each example may belong to more than one clasgiracy as a function of the number of examples used during
The results are averaged over the ten runs. training, and comparing models built only with some training
For fairly small datasets, using prior knowledge gives draxamples and models built with both hand-crafted rules (prior
matic improvements over straight boosting. On large trainingiowledge) and training examples.
sets on thé&lewsgroupslataset, the imperfect nature of the prior On theHMIHY dataset, we trained the models on 50, 100,
knowledge eventually hurts performance, although this effectigo, 300 rounds when the number of available training exam-
not seen oAP-Titles ples was respectively 50, 100, 200, 400 and up. The parameter
n was selected empirically based on the nhumber of available
training examples. We setto 1 when the number of training
examples was less than or equal to 200, 0.1 when it was be-
We next describe experiments on datasets from two AT&lyeen 400 and 800, and 0.01 when it was greater. The dashed
spoken-dialogue applications. In both applications, the gagle in Fig. 4 shows the classification accuracy for models built
is to extract the meaning of utterances spoken by telephafi¢hand-crafted rules and training examples whereas the solid
callers. These utterances are then passed through an automatg show the classification accuracy for models built either
speech recognizer. Our goal is to train a classifier that can cgfr training examples only or on hand-crafted rules only. An
egorize the resulting (very noisy) text. The classifier's outpyhprovement in accuracy is observed when using hand-crafted
would then be passed to the dialogue manager which carriesgfes and training examples together. This comes from the fact
with the dialogue by formulating an appropriate response to tfigst some patterns of the hand-crafted rules are not in the data
caller’s utterance. at all or are not in a sufficient number of sentences to have a

The two applications are: statistical impact when training only on the data.

« How May | Help YouTHMIHY): Here, the goal isto iden-  In this experiment, when fewer training examples were avail-
tify a particular call type, such as collect call, a requestble (< 100 examples) exploiting human expertise provided
for billing information, etc. There are 15 different classeglassification accuracy levels that are equivalent to models
We did experiments with 50 to 1600 sentences in the traittained on four times the amount of training data. When the
ing set and 2991 sentences in the test set. More infornmasmber of training examples is larges (100), accuracy lev-
tion about this dataset is provided by Gorin, Riccardi anels become equivalent to two times the amount of training data.
Wright [8]. When larger than 6000 sentences were available, both models

« HelpDesk This application provides information aboutwere found to converge to similar classification accuracy.
AT&T's Natural Voices text-to-speech engine. For in-  Results: Fig. 5 shows a similar comparison for the
stance, the caller can ask for a demo, price informatioHglpDesktask. We trained the models on 100, 200, 400, 600,
or a sales representative. There are 22 different classg30, 1000 rounds when the number of training examples was
We trained models on 100 to 2675 sentences and testedespectively 100, 200, 400, 800, 1600, and up. We)get0.1
2000 sentences. when the number of training examples was less than or equal

B. Spoken-dialogue datasets
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Fig. 4. Comparison of performance using data and knowledgarately or
together on théiMIHY task. Fig. 6. Adding new semantic classes following model trajnin

0.9
even when no data is present.

0.85

1 V. VARIATIONS AND EXTENSIONS

0.8

We have described the extension of one particular boost-
ing algorithm to incorporate prior knowledge. However, the
1 same basic technique can be applied to a great variety of boost-
ing algorithms. For instance, we have used Schapire and
Singer’s [14] confidence-rated boosting framework in which the
base functions map to real numbers whose magnitude indicate
a level of confidence. This choice is orthogonal to our basic
. method for incorporating prior knowledge. Although this ap-
knowledge proach can substantially speed up convergence when using a
T i rather weak base learner, in some settings, one may wish to use

‘ ‘ ‘ ‘ ‘ a more standard base learner like C4.5 outputting “hard” predic-
°0 10 training Examples 2500 * tions in{—1, +1} and for which the goal is simply (weighted)
error minimization; for this, a more basic version of AdaBoost
can be used.

We also have chosen a particular method of extending binary
AdaBoost to the multiclass case, an extension that Schapire
to 1600 and to 0.01 otherwise. Fig. 5 shows an improvementand Singer [14] call AdaBoost.MH. We could instead use one
classification accuracy when hand-crafted rules are being usefdthe other multiclass extensions such as AdaBoost.MR [6],
This improvement is up to 9% absolute with 100 training eX44] as modified for logistic regression by Collins, Schapire and
amples and drops to 0.5% when more data becomes availab&nger [2].

In the figures, the knowledge-only curves are not perfectly In fact, our approach is not even limited to boosting algo-
flat. This comes from the fact that the models from the knowdithms. The basic idea of modifying the loss function used in
edge take into account the empirical distribution of classes lofjistic regression by adding pseudo-examples can be applied
the available training examples rather than using a uniform dis-any algorithm for logistic regression.
tribution as was done in Section IV-A. Note that our measure of fit to the prior model givenin Eq. (4)

A further experiment was performed to evaluate the accurasyindependent of the actual training labg]s This means that
of our classifier when new semantic classes are added following need not limit this term to labeled data: if, as is often the
system training. This is the situation when new functionalitiesase, we have access to abundant unlabeled data, we can use it
are needed following system deployment but with no data avditstead for this term.
able. Fig. 6 shows the classification accuracy when four addi-Another idea for future research is to follow the co-training
tional semantic classes are added to dIHY model after approach studied by Blum and Mitchell [1] and Collins and
being trained on 11 classes. Although the system performar8iager [3] in which we train two models, sgyandg, which
drops in general, the results demonstrate that incorporating e force to give similar predictions on a large set of unlabeled
man judgment helps to provide an initial boost in performanciata. In this case, the term in Eq. (4) might be replaced by
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Fig. 5. Comparison of performance using data and knowledgarately or
together on thélelpDeskiask.



something like [12]

Z RE (o(g(zi)) || o(f(2:)))

(13]

where the sum is over the unlabeled dataset. [14]

VI. CONCLUSION (19]

We have described a new and simple method for incorporat-
ing prior knowledge into boosting as a means of compensating
for insufficient data. Our approach exploits a statistical view of
boosting first put forth by Friedman, Hastie and Tibshirani [7]
which led to a number of boosting-like algorithms for logistic
regression, including that of Collins, Schapire and Singer [2].
We used this probabilistic interpretation as a basis for modify-
ing the underlying loss function to incorporate the prior knowl-
edge. As shown in this paper, the resulting algorithm requires
only the addition of weighted pseudo-examples, and the con-
vergence of the algorithm follows from the work of Collins,
Schapire and Singer [2].

Our experiments on text-categorization datasets indicate that
performance using both data and prior knowledge can be much
better than with either alone, especially when very little data is
available. This improvement in performance is vital in appli-
cations like the spoken-dialogue system described in Section |
which need to be deployed before enough data can be collected,
but which can then take advantage of the data that later becomes
available following initial deployment.

Future research is needed to determine the effectiveness of
this general technique for other kinds of learning problems,
when using different base learners, and when using other meth-
ods for logistic regression.
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