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Abstract—
The use of boosting for call classification in spoken language

understanding is described in this paper. An extension to the
AdaBoost algorithm is presented that permits the incorporation
of prior knowledge of the application as a means of compensat-
ing for the large dependence on training data. We give a conver-
gence result for the algorithm, and we describe experimentson
four datasets showing that prior knowledge can substantially im-
prove classification performance.

I. I NTRODUCTION

Building robust natural-language understanding for spoken
dialogue applications such as those for automated customer
care [8] and help desks [5] presents several technical chal-
lenges: (1) the need foraccuratelarge-vocabulary recognition
to accommodate for the variety of input requests, (2) parsing
and understanding users’ requests, and (3) supporting mixed-
initiative and conversational dialogue. The spontaneous input
and language variation for these sets of applications present ma-
jor challenges to both speech recognition and language under-
standing.

Creating robust natural language systems is highly depen-
dent on the availability of data for training the recognition and
understanding models. In this paper, we consider the task
of extracting the meaning of a user’s request as a multi-label
classification problem. We investigate the use of Freund and
Schapire’s AdaBoost algorithm [6] which combines many sim-
ple and moderately accurate categorization rules that are trained
sequentially into a single, highly accurate model that can accu-
rately predict a user’s request. It has been shown to outperform
traditional methods for text categorization [15].

Like many machine-learning methods, the AdaBoost algo-
rithm is entirely data-driven in the sense that the classifier it
generates is derived exclusively from the evidence present in
the training data itself. This can be a problem since it means
that spoken dialogue systems or new functionalities cannot be
deployed until sufficient real data has been collected.

In this paper, we explore the use of human-crafted knowledge
to compensate for the lack of data in building robust classifiers.
In its standard form, boosting does not allow for the direct in-
corporation of such prior knowledge. We describe a new mod-
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ification of boosting that combines and balances human exper-
tise with available training data. We aim for an approach that
allows the human’s rough judgments to be refined, reinforced
and adjusted by the statistics of the training data, but in a man-
ner that does not permit the data to entirely overwhelm human
judgments.

Prior knowledge may be acquired from several sources, e.g.,
human judgment, application guidelines and manuals, world
knowledge, and in-domain website. In fact while developing
a spoken dialogue system designers do have access to one or
more such sources of knowledge. Designers use these sources
of knowledge to deduce information crucial for the develop-
ment of the dialogue system, i.e., the functionalities to support,
and a basic understanding of how users may interact with the
application. It would be only prudent, therefore, to also use
these sources of knowledge for bootstrapping the text catego-
rization module needed for the natural language understanding,
especially when data is limited.

As an example, prior knowledge allows us to encode rules
that can classify user responses to confirmation questions like:
“So you want to fly from Boston to New York on Sunday
evening?” A user response containing “yes”, “okay”, “correct”,
“all right”, “fine”, etc. is highly indicative of a positive confir-
mation.

The basic idea of our approach is to modify the loss function
used by boosting so that the algorithm balances two terms, one
measuring fit to the training data, and the other measuring fit to
a human-built model. The actual algorithmic modification that
this entails turns out to be very simple, only requiring the ad-
dition of weighted pseudo-examples to the training set. In this
respect, our method turns out to be similar to one suggested by
Pazzani and Billsus [12] for modifying the naive Bayes algo-
rithm to incorporate prior knowledge.

We allow prior knowledge that may be of any form that pro-
vides guesses, however rough, of the conditional probability of
class labels for each training example. We include one example
of how such a model can be easily built for text categorization
tasks from human-chosen keywords.

Our approach is based on the boosting-style algorithm for lo-
gistic regression described by Collins, Schapire and Singer [2],
and we use their results to prove a simple convergence theorem
for our algorithm. Although presented only in the boosting set-
ting, our general technique for incorporating prior knowledge
can be combined with any method based on logistic regression.

We present several experiments using boosting on both
speech and text corpora. We describe experiments on datasets
derived from two spoken-dialogue applications. We also
present results on two text-based benchmark datasets. In each
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case, we compare boosting with and without prior knowledge.
The results show that prior knowledge can substantially im-
prove performance, particularly when data is greatly limited.

II. BOOSTING AND LOGISTIC REGRESSION

We assume that we are given a set of training examples
(x1, y1), . . . , (xm, ym). Eachxi is called aninstance. In this
paper, eachxi will generally be the text of a transcribed or
recognized utterance; however, in general,xi may incorporate
other information about what was spoken, or more generally,
about whatever the object is that is to be classified. Eachyi is
the label or classassigned to the instancexi; for instance,yi

may indicate call type. For simplicity, we assume for now that
there are only two classes,−1 and+1. Let X andY be the
spaces of all possible instances and all possible labels, respec-
tively. Thus, for now,Y = {−1,+1}. When discussing proba-
bilities, we assume that all training and test examples(x, y) are
selected independently from some distributionD onX × Y.

The goal of a learning algorithm is to use the training data
to derive a rule that accurately predicts the class of any new
instancex; such a prediction rule is called aclassifier. The
approach that we take is based on a machine-learning method
calledboosting[6], [13]. The basic idea of boosting is to build a
highly accurate classifier by combining many “weak” or “sim-
ple” base classifiers, each one of which may only be moderately
accurate. To obtain these base classifiers, we assume we have
access to abase learning algorithmthat we use as a black-box
subroutine.

The collection of base classifiers is constructed in rounds.
On each roundt, the base learner is used to generate a base
classifierht. Besides supplying the base learner with training
data, the boosting algorithm also provides a set of nonnegative
weightsWt over the training examples. Intuitively, the weights
encode how important it is thatht correctly classify each train-
ing example. Generally, the examples that were most often
misclassified by the preceding base classifiers will be given the
most weight so as to force the base learner to focus on the “hard-
est” examples.

Following Schapire and Singer [14], we useconfidence-rated
classifiersh that, rather than outputting simply−1 or +1, out-
put a real numberh(x) whose sign (−1 or +1) is interpreted
as a prediction, and whose magnitude|h(x)| is a measure of
“confidence.” We refer to these asbase functions.

Although our eventual goal is classification, we focus on esti-
mating probabilities which can be converted into classifications
in the obvious way by thresholding. Specifically, given training
data, we wish to build a rule that estimates the conditional prob-
ability thaty = +1 givenx when test example(x, y) is chosen
according toD. In logistic regression, we do this by building a
real-valued functionf : X → R and estimating this probability
by σ(f(x)) where

σ(z) =
1

1 + e−z
.

Later,f will be of a particular form, namely, a linear combina-
tion of base functions. Once such a model has been postulated,

Input: (x1, y1), . . . , (xm, ym)
wherexi ∈ X , yi ∈ {−1,+1}

for t = 1, . . . T :
• let

Wt(i) =
1

1 + exp
(

yi

∑t−1
t′=1 ht′(xi)

) (1)

• use theWt(i)’s to obtain base functionht : X → R from
base learner; the base learner should minimize the objec-
tive function:

∑

i

Wt(i)e
−yiht(xi) (2)

Output final classifier:f(x) =
T
∑

t=1

ht(x)

Fig. 1. A binary boosting algorithm.

we can attempt to findf by maximizing the conditional likeli-
hood of the data, or equivalently, minimizing the negative log
conditional likelihood which works out to be

∑

i

ln (1 + exp(−yif(xi))). (3)

A connection between boosting and logistic regression was
first suggested by Friedman, Hastie and Tibshirani [7], and was
further explored by Duffy and Helmbold [4]. Along these same
lines, Collins, Schapire and Singer [2] describe a variant of
Freund and Schapire’s [6] AdaBoost algorithm for minimizing
Eq. (3) over functionsf that are linear combinations of base
functions. Pseudo-code for the algorithm that we use, which
we call AdaBoost.L, is shown in Fig. 1. This algorithm is the
same as that of Collins, Schapire and Singer except in the man-
ner in which base functionsht are chosen on each round; our
algorithm is essentially a confidence-rated version of theirs.

Like AdaBoost, AdaBoost.L works in rounds. On each
round, a set of weightsWt(i) over the training set is computed
as in Eq. (1) and used to find a base functionht : X → R.
This base function should minimize Eq. (2) over some space of
base functions. AfterT rounds, the sum of all theht’s is output
as the final functionf . This procedure is in fact identical to
confidence-rated AdaBoost if we instead computeWt(i) using
the rule

Wt(i) = exp

(

−yi

t−1
∑

t′=1

ht′(xi)

)

.

A. Convergence

We can use the results and techniques of Collins, Schapire
and Singer [2] to prove the convergence of this algorithm to
the minimum of Eq. (3), provided the base functions have a
particular form so that the spaceH of base functions issemi-
finite, meaning thatH contains a finite set of functionsG for
which:

1) every function inH can be written as a linear combination
of the functions inG, and

2) αg is in H for everyα ∈ R andg ∈ G.
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Theorem 1:Assume the base functionsht in Fig. 1 minimize
Eq. (2) over a semi-finite spaceH. Then asT → ∞, the loss
in Eq. (3) for the final functionf converges to the infemum of
this loss over all linear combinations of functions inH.
Proof sketch: Collins, Schapire and Singer [2] proved the con-
vergence of their sequential-update algorithm when run with a
finite set of base functions. Since our algorithm AdaBoost.L is
a confidence-rated variant of theirs, to prove the result, we only
need to show that, on each round, AdaBoost.L makes at least as
much progress as their sequential-update algorithm applied to
the finite setG. In particular, we note that
∑

i

Wt(i)e
−yiht(xi) = min

h∈H

∑

i

Wt(i)e
−yih(xi)

≤ min
α∈R ,g∈G

∑

i

Wt(i)e
−yiαg(xi)

≤
∑

i

Wt(i)e
−yiαtgt(xi)

whereαt andgt are the choices that would have been made
by their algorithm. With these additional steps, their proof of
convergence is easily modified.

The base learning algorithm that we use in our experiments
for finding base functions is the same as in Schapire and
Singer’s [15] BoosTexter system. These experiments all deal
with text, and each base function tests for the presence or ab-
sence of a particular word, short phrase or other simple pattern,
henceforth referred to simply as aterm. If the term is present,
then one value is output; otherwise, some other value is output.
For instance, the base function might be: “If the word ‘yes’
occurs in the text, then output+1.731, else output−2.171.”
Schapire and Singer [15] describe a base learning algorithm that
efficiently finds the best base function of this form, i.e., the one
minimizing Eq. (2). It can be seen that this space of base func-
tions is semi-finite since there are only finitely many terms and
since a rule of this form can be decomposed asa0g0 + a1g1

wherea0, a1 ∈ R andg1 (respectively,g0) outputs1 if the term
is present (respectively, absent), and0 otherwise.

III. I NCORPORATINGPRIOR KNOWLEDGE

We now describe our modification to boosting to incorpo-
rate prior knowledge. In our approach, a human expert must
begin by constructing a ruleπ mapping each instancex to an
estimated conditional probability distributionπ(y|x) over the
possible label valuesy ∈ {−1,+1}. We discuss below some
methods for constructing such a rule.

Given this background or prior model and training data, we
now have two possibly conflicting goals in constructing a pre-
dictor: (1) fit the data, and (2) fit the prior model. As before,
we measure fit to the data using log conditional likelihood as
in Eq. (3). To measure fit to the prior model, for each exam-
ple xi, we use relative entropy (also called Kullback-Leibler
divergence) between the prior model distributionπ(·|xi) and
the distribution over labels associated with our constructed lo-
gistic modelσ(f(xi)). More precisely, lettingπ+(x) = π(y =
+1|x), we measure fit to the prior model by

∑

i

RE(π+(xi) ‖ σ(f(xi))) (4)

where

RE(p ‖ q) = p ln(p/q) + (1 − p) ln((1 − p)/(1 − q))

is binary relative entropy. The relative importance of the two
terms is controlled by the parameterη.

Putting these together, we get the objective function
∑

i

[ln (1 + exp(−yif(xi)))

+ηRE(π+(xi) ‖ σ(f(xi)))]. (5)

This can be rewritten as

C +
∑

i

[ln(1 + e−yif(xi))

+ηπ+(xi) ln(1 + e−f(xi))

+η(1 − π+(xi)) ln(1 + ef(xi))] (6)

whereC is a term that is independent off , and so can be dis-
regarded. Note that this objective function has the same form
as Eq. (3) over a larger set and with the addition of nonnegative
weights on each term.

Thus, to minimize Eq. (6), we apply the AdaBoost.L pro-
cedure described in Section II to a larger weighted training
set. This new set includes all of the original training examples
(xi, yi), each with unit weight. In addition, for each training ex-
ample(xi, yi), we create two new training examples(xi,+1)
and(xi,−1) with weightsηπ+(xi) andη(1−π+(xi)), respec-
tively. Thus, we triple the number of examples.1 During train-
ing, these weightsw0 are now used in computingWt so that

Wt(i) =
w0(i)

1 + exp
(

yi

∑t−1
t′=0 ht′(xi)

)

(here,i ranges over all of the examples in thenewtraining set).
The modification of Theorem 1 for weighted training sets is
straightforward.

One final modification that we make is to add a0-th base
functionh0 that is based onπ+ so as to incorporateπ+ right
from the start. In particular, we take

h0(x) = σ−1(π+(x)) = ln

(

π+(x)

1 − π+(x)

)

and includeh0 in computing the final classifierf .

A. Multiclass problems

Up until now, we have assumed a binary prediction problem
with Y = {−1,+1}. More generally, we follow Schapire and
Singer’s [14], [15] approach to multiclass problems in which
more than two classes are allowed and furthermore in which
each example may belong to multiple classes. The intuitive idea
is to reduce to binary questions which ask if each example is or
is not in each of the classes.

In particular, suppose that there arek classesY =
{1, 2, . . . , k}. Each labelyi is now a vector in{−1,+1}k

1Although, by noticing that(xi, yi) occurs twice, we can actually get away
with only doubling the training set.
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where theℓ-th component indicates if the example is or is not in
classℓ. Our purpose now is to find a functionf : X × Y → R,
andσ(f(x, ℓ)) is then the estimated probability that examplex
belongs to classℓ. Treating each class separately, the objective
function in Eq. (3) becomes

∑

i

∑

ℓ

ln
(

1 + e−yiℓf(xi,ℓ)
)

.

The boosting algorithm AdaBoost.L is modified straightfor-
wardly: Maintaining weights on example-label pairs, Eq. (1)
becomes

Wt(i, ℓ) =
1

1 + exp
(

yiℓ

∑t−1
t′=1 ht′(xi, ℓ)

) ,

and Eq. (2) becomes

∑

i

∑

ℓ

Wt(i, ℓ)e
−yiℓht(xi,ℓ).

As was done by Schapire and Singer [15], our base learner
finds rules that still test for the presence or absence of a term,
but now outputs a whole vector of numbers (one for each class)
depending on the result of this test.

Our prior knowledge now gives guessed estimatesπ(ℓ|x) of
the conditional probability that examplex belongs to classℓ.
We do not require thatπ(·|x) be a probability distribution. The
objective function in Eqs. (5) and (6) becomes

∑

i

∑

ℓ

[ln(1 + e−yiℓf(xi,ℓ))

+ηRE (π(ℓ|xi) ‖ σ(f(xi, ℓ)))]

=
∑

i

∑

ℓ

[ln(1 + e−yiℓf(xi,ℓ))

+ηπ(ℓ|xi) ln(1 + e−f(xi,ℓ))

+η(1 − π(ℓ|xi)) ln(1 + ef(xi,ℓ))] + C.

So to handle this objective function, similar to the binary case,
we create a new training set with weights over example-label
pairs: The original examples(xi,yi) occur with unit weight
w0(i, ℓ) = 1. Each such example is replicated twice as(xi,+1)
and(xi,−1) where1 is the all ones vector. Lettingi + m and
i + 2m be the indices of the new replicated examples, their
weights are, respectively,

w0(i + m, ℓ) = ηπ(ℓ|xi)

andw0(i + 2m, ℓ) = η(1 − π(ℓ|xi)).

IV. EXPERIMENTS

In this section, we describe experiments comparing boosting
with prior knowledge against boosting with no such knowledge,
particularly when data is substantially limited. We did not com-
pare to other text categorization methods, since this was not the
purpose of the study; moreover, Schapire and Singer [15] car-
ried out extensive experiments comparing boosting to several
other methods on text categorization problems.

Class Keywords
japan japan, tokyo, yen
bush bush, george, president, election
israel israel, jerusalem, peres, sharon, palestinian, is-

raeli, arafat
britx britain, british, england, english, london,

thatcher
gulf gulf, iraq, saudi, arab, iraqi, saddam, hussein,

kuwait
german german, germany, bonn, berlin, mark
weather weather, rain, snow, cold, ice, sun, sunny, cloudy
dollargold dollar, gold, price
hostages hostages, ransom, holding, hostage
budget budget, deficit, taxes
arts art, painting, artist, music, entertainment, mu-

seum, theater
dukakis dukakis, boston, taxes, governor
yugoslavia yugoslavia
quayle quayle, dan
ireland ireland, ira, dublin
burma burma
bonds bond, bonds, yield, interest
nielsens nielsens, rating, t v, tv
boxoffice box office, movie
tickertalk stock, bond, bonds, stocks, price, earnings

TABLE I
THE KEYWORDS USED FOR EACH CLASS ON THEAP-TitlesDATASET.

We used two publicly available text categorization datasets
and two proprietary speech categorization datasets. The latter
datasets come from the application that was the original moti-
vation for this work as described in Section I. We chose the
former datasets because they are large, and also because they
naturally lent themselves to the easy construction of a human-
crafted model. We could not use a substantially larger number
of datasets because of the inherently intensive, subjective and
non-automatic nature of building such models.

A. Benchmark datasets

In the first set of experiments, we used these two benchmark
text-categorization datasets:

• AP-Titles: This is a corpus of Associated Press newswire
headlines [11], [10]. The object is to classify the headlines
by topic. We used the preparation of this dataset described
by Schapire and Singer [15] consisting of 29,841 examples
and 20 classes.

• Newsgroups: This dataset consists of Usenet articles col-
lected by Lang [9] from 20 different newsgroups. The ob-
ject is to predict which newsgroup a particular article was
posted to. One thousand articles were collected for each
newsgroup. However, after removing duplicates, the total
number of articles dropped to 19,466.
Base learner:We used the same base learner as described

by Schapire and Singer [15]. As described in Section II-A, this
base learner searches for base functions that test for the pres-
ence or absence of a term. In our experiments, we used all pos-
sible terms which were sequences of up to three words, possibly
with the middle word matching a “wildcard.” In the multiclass
case, if the term is present, a particular set of values is output
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Class Keywords
alt.atheism god, atheism, christ, jesus, religion, atheist
comp.graphics graphics, color, computer, computers, plot,

screen
comp.os.ms-
windows.misc

computer, computers, operating system, mi-
crosoft, windows, ms, dos

comp.sys.ibm.
pc.hardware

computer, computers, ibm, pc, clone, hardware,
cpu, disk

comp.sys.mac.
hardware

computer, computers, mac, macintosh, hard-
ware, cpu, disk

comp.win-
dows.x

computer, computers, windows, x, unix

misc.forsale for sale, asking, selling, price
rec.autos car, drive, fast, jaguar, toyota, ford, honda, volk-

swagen, gm, chevrolet, tire, engine
rec.motor-
cycles

motorcycle, honda, harley, wheel, engine, throt-
tle

rec.sport.
baseball

baseball, hit, strike, ball, base, bases, homerun,
runs, out, outs

rec.sport.
hockey

hockey, stick, puck, goal, check

sci.crypt cryptography, encrypt, cipher, decrypt, security,
secret, key

sci.electronics electronics, computer, computers, chip, electric
sci.med medicine, doctor, science, heal, sick, cancer
sci.space space, astronaut, nasa, rocket, space shuttle
soc.religion.
christian

religion, christian, jesus, christ, god, catholic,
protestant

talk.politics.
guns

guns, gun, nra, brady, kill, shoot, shot

talk.politics.
mideast

mideast, israel, jordan, arafat, palestinian, syria,
lebanon, saudi, iraq, iran

talk.politics.
misc

politics, clinton, president, congress, senate,
congressman, senator

talk.religion.
misc

religion, jewish, christian, catholic, protestant,
god, believe

TABLE II
THE KEYWORDS USED FOR EACH CLASS ON THENewsgroupsDATASET.

by the base function, one for each class; if the term is absent,
some other set of values is output. It can be shown, using hash
tables and manipulation of the loss function, that an efficient
search can be employed on each round to quickly find the best
base function of this form minimizing Eq. (2).

Prior models:Our framework permits prior knowledge of
any kind, so long as it provides estimates, however rough, of
the probability of any example belonging to any class. Here
we describe one possible technique for creating such a rough
model.

For each dataset, one of the authors, with access to the list
of categories but not to the data itself, thought up a handful of
keywords for each class. These lists of keywords are shown in
Tables I and II. These keywords were produced through an en-
tirely subjective process of free association with general knowl-
edge of what the categories were about (and also the time period
during which the data was connected), but no other information
or access to the data. Although this step required direct human
involvement, the rest of the process of generating a prior model
was fully automatic.

We next used these keywords to build a very simple and naive
model. We purposely used a model that is very far from perfect
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Fig. 2. Comparison of test error rate using prior knowledge and data separately
or together on theAP-Titlesdataset, measured as a function of the number of
training examples.

to see how the algorithm performs with prior knowledge that is
as rough as can be expected in practice. We began be defining
the conditional probability of a classℓ given the presence or
absence of a keywordw, denotedπ(ℓ|w) or π(ℓ|w). We let

π(ℓ|w) =

{

0.9/nw if w is a keyword forℓ
0.1/(k − nw) otherwise

wherenw is the number of classes listingw as a keyword. In
other words, if the keywordw is listed for a single classℓ then
seeing the word gives a 90% probability that the correct class
is ℓ; if w is listed for several classes, the 90% probability is
divided equally among them. The remaining 10% probability
is divided equally among all classes not listingw as a keyword.

If w is not present, we assign equal probability to all classes:
π(ℓ|w) = 1/k. We also define the prior distribution of classes
to be uniform:π(ℓ) = 1/k.

Given these rules, we make the naive assumption that the
keywords are conditionally independent of one another given
the class. We can then use Bayes’ rule to compute the probabil-
ity (underπ) of each class given the presence or absence of all
the keywords. This becomes our estimateπ(ℓ|x).

Experimental set-up:For each dataset and on each run,
we first randomly permuted the data. We then trained boosting,
with or without prior knowledge, on the firstm examples, for
m = 25, 50, 100, 200, . . . ,M , whereM is 12800 forAP-Titles
and 6400 forNewsgroups. The remaining examples (i.e., start-
ing with exampleM + 1) are used for testing. We ran each
experiment ten times and averaged the results. We fixed the
number of rounds of boosting to 1000. We set the parameter
η using the heuristic formula2000m−1.66 (which was chosen
to interpolate smoothly between guesses at appropriate values
of η for a couple values ofm). This setting conforms to the
basic intuition that, when more data is available, less weight
should be given to the prior knowledge. No experiments were
conducted to determine if better performance could be achieved
with a wiser choice ofη.

Results: Figs. 2 and 3 show the results of these experi-
ments. The figures show test error rate for boosting with and
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Fig. 3. Comparison of test error rate using prior knowledge and data separately
or together on theNewsgroupsdataset, measured as a function of the number
of training examples.

without prior knowledge measured as a function of the num-
ber of training examples. The figures also show the error rate
achieved using the prior model alone with no training exam-
ples at all. Here, error rate means fraction of test examples on
which the top-scoring label was not one of the correct labels
(recall that each example may belong to more than one class).
The results are averaged over the ten runs.

For fairly small datasets, using prior knowledge gives dra-
matic improvements over straight boosting. On large training
sets on theNewsgroupsdataset, the imperfect nature of the prior
knowledge eventually hurts performance, although this effect is
not seen onAP-Titles.

B. Spoken-dialogue datasets

We next describe experiments on datasets from two AT&T
spoken-dialogue applications. In both applications, the goal
is to extract the meaning of utterances spoken by telephone
callers. These utterances are then passed through an automatic
speech recognizer. Our goal is to train a classifier that can cat-
egorize the resulting (very noisy) text. The classifier’s output
would then be passed to the dialogue manager which carries on
with the dialogue by formulating an appropriate response to the
caller’s utterance.

The two applications are:
• How May I Help You?(HMIHY): Here, the goal is to iden-

tify a particular call type, such as collect call, a request
for billing information, etc. There are 15 different classes.
We did experiments with 50 to 1600 sentences in the train-
ing set and 2991 sentences in the test set. More informa-
tion about this dataset is provided by Gorin, Riccardi and
Wright [8].

• HelpDesk: This application provides information about
AT&T’s Natural Voices text-to-speech engine. For in-
stance, the caller can ask for a demo, price information,
or a sales representative. There are 22 different classes.
We trained models on 100 to 2675 sentences and tested on
2000 sentences.

Prior models: The prior models were built in a similar
fashion to those used in the preceding experiments, although we
allowed the human more freedom in choosing probabilities, and
more rules were used. For example, to encode a rule indicating
that a user response containing “yes”, “okay”, “correct”, “all
right”, or “fine” is highly indicative of a positive confirmation,
we can define

π(Yes|yes∨ okay∨ correct∨ all right∨ fine) = 0.9,

that is, the probability of the “Yes” class, given that any of these
keywords were uttered, is 0.9. Another example is for classify-
ing user requests to be connected to an operator/service agent.
This can be expressed by the rule

π(Agent|speak∧(human∨operator∨(service∧agent))) = 0.95.

Any probability “left over” by such a rule is spread over
the remaining classes in proportion to their prior probabilities
which we estimated using the available training data. Likewise,
these prior or default probabilities were used when the given
rule is not satisfied. As before, the probabilities assigned by
the various rules are combined using Bayes rule with a naive
independence assumption.

Experimental set-up:We performed similar experiments
to those described in Section IV-A measuring classification ac-
curacy as a function of the number of examples used during
training, and comparing models built only with some training
examples and models built with both hand-crafted rules (prior
knowledge) and training examples.

On theHMIHY dataset, we trained the models on 50, 100,
200, 300 rounds when the number of available training exam-
ples was respectively 50, 100, 200, 400 and up. The parameter
η was selected empirically based on the number of available
training examples. We setη to 1 when the number of training
examples was less than or equal to 200, 0.1 when it was be-
tween 400 and 800, and 0.01 when it was greater. The dashed
line in Fig. 4 shows the classification accuracy for models built
on hand-crafted rules and training examples whereas the solid
lines show the classification accuracy for models built either
on training examples only or on hand-crafted rules only. An
improvement in accuracy is observed when using hand-crafted
rules and training examples together. This comes from the fact
that some patterns of the hand-crafted rules are not in the data
at all or are not in a sufficient number of sentences to have a
statistical impact when training only on the data.

In this experiment, when fewer training examples were avail-
able (< 100 examples) exploiting human expertise provided
classification accuracy levels that are equivalent to models
trained on four times the amount of training data. When the
number of training examples is larger (> 100), accuracy lev-
els become equivalent to two times the amount of training data.
When larger than 6000 sentences were available, both models
were found to converge to similar classification accuracy.

Results: Fig. 5 shows a similar comparison for the
HelpDesktask. We trained the models on 100, 200, 400, 600,
800, 1000 rounds when the number of training examples was
respectively 100, 200, 400, 800, 1600, and up. We setη to 0.1
when the number of training examples was less than or equal
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Fig. 4. Comparison of performance using data and knowledge separately or
together on theHMIHY task.
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Fig. 5. Comparison of performance using data and knowledge separately or
together on theHelpDesktask.

to 1600 and to 0.01 otherwise. Fig. 5 shows an improvement in
classification accuracy when hand-crafted rules are being used.
This improvement is up to 9% absolute with 100 training ex-
amples and drops to 0.5% when more data becomes available.

In the figures, the knowledge-only curves are not perfectly
flat. This comes from the fact that the models from the knowl-
edge take into account the empirical distribution of classes of
the available training examples rather than using a uniform dis-
tribution as was done in Section IV-A.

A further experiment was performed to evaluate the accuracy
of our classifier when new semantic classes are added following
system training. This is the situation when new functionalities
are needed following system deployment but with no data avail-
able. Fig. 6 shows the classification accuracy when four addi-
tional semantic classes are added to theHMIHY model after
being trained on 11 classes. Although the system performance
drops in general, the results demonstrate that incorporating hu-
man judgment helps to provide an initial boost in performance
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Fig. 6. Adding new semantic classes following model training.

even when no data is present.

V. VARIATIONS AND EXTENSIONS

We have described the extension of one particular boost-
ing algorithm to incorporate prior knowledge. However, the
same basic technique can be applied to a great variety of boost-
ing algorithms. For instance, we have used Schapire and
Singer’s [14] confidence-rated boosting framework in which the
base functions map to real numbers whose magnitude indicate
a level of confidence. This choice is orthogonal to our basic
method for incorporating prior knowledge. Although this ap-
proach can substantially speed up convergence when using a
rather weak base learner, in some settings, one may wish to use
a more standard base learner like C4.5 outputting “hard” predic-
tions in{−1,+1} and for which the goal is simply (weighted)
error minimization; for this, a more basic version of AdaBoost
can be used.

We also have chosen a particular method of extending binary
AdaBoost to the multiclass case, an extension that Schapire
and Singer [14] call AdaBoost.MH. We could instead use one
of the other multiclass extensions such as AdaBoost.MR [6],
[14] as modified for logistic regression by Collins, Schapire and
Singer [2].

In fact, our approach is not even limited to boosting algo-
rithms. The basic idea of modifying the loss function used in
logistic regression by adding pseudo-examples can be applied
to any algorithm for logistic regression.

Note that our measure of fit to the prior model given in Eq. (4)
is independent of the actual training labelsyi. This means that
we need not limit this term to labeled data: if, as is often the
case, we have access to abundant unlabeled data, we can use it
instead for this term.

Another idea for future research is to follow the co-training
approach studied by Blum and Mitchell [1] and Collins and
Singer [3] in which we train two models, sayf andg, which
we force to give similar predictions on a large set of unlabeled
data. In this case, the term in Eq. (4) might be replaced by
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something like

∑

i

RE (σ(g(xi)) ‖ σ(f(xi)))

where the sum is over the unlabeled dataset.

VI. CONCLUSION

We have described a new and simple method for incorporat-
ing prior knowledge into boosting as a means of compensating
for insufficient data. Our approach exploits a statistical view of
boosting first put forth by Friedman, Hastie and Tibshirani [7]
which led to a number of boosting-like algorithms for logistic
regression, including that of Collins, Schapire and Singer [2].
We used this probabilistic interpretation as a basis for modify-
ing the underlying loss function to incorporate the prior knowl-
edge. As shown in this paper, the resulting algorithm requires
only the addition of weighted pseudo-examples, and the con-
vergence of the algorithm follows from the work of Collins,
Schapire and Singer [2].

Our experiments on text-categorization datasets indicate that
performance using both data and prior knowledge can be much
better than with either alone, especially when very little data is
available. This improvement in performance is vital in appli-
cations like the spoken-dialogue system described in Section I
which need to be deployed before enough data can be collected,
but which can then take advantage of the data that later becomes
available following initial deployment.

Future research is needed to determine the effectiveness of
this general technique for other kinds of learning problems,
when using different base learners, and when using other meth-
ods for logistic regression.
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