
Machine Learning: Proceedings of the Nineteenth International Conference, 2002.

Incorporating Prior Knowledge into Boosting

Robert E. Schapire schapire@research.att.com

Marie Rochery marie.rochery@eurecom.fr

Mazin Rahim mazin@research.att.com

Narendra Gupta ngupta@research.att.com

AT&T Labs � Research, Shannon Laboratory, 180 Park Avenue, Florham Park, NJ 07932

Abstract

We describe a modi�cation to the AdaBoost

algorithm that permits the incorporation of

prior human knowledge as a means of com-

pensating for a shortage of training data. We

give a convergence result for the algorithm,

and we describe experiments on four datasets

showing that prior knowledge can substan-

tially improve performance.

1. Introduction

Like many machine-learning methods, Freund and

Schapire's (1997) AdaBoost algorithm is entirely data-

driven in the sense that the classi�er it generates is

derived exclusively from the evidence present in the

training data itself. When data is abundant, this ap-

proach makes sense. However, in some applications,

data may be severely limited, but there may be hu-

man knowledge that, in principle, might compensate

for the lack of data.

In its standard form, boosting does not allow for the

direct incorporation of such prior knowledge. In this

paper, we describe a new modi�cation of boosting that

combines and balances human expertise with available

training data. We aim for an approach that allows the

human's rough judgments to be re�ned, reinforced and

adjusted by the statistics of the training data, but in

a manner that does not permit the data to entirely

overwhelm human judgments.

The basic idea of our approach is to modify the loss

function used by boosting so that the algorithm bal-

ances two terms, one measuring �t to the training

data, and the other measuring �t to a human-built

model. The actual algorithmic modi�cation that this

entails turns out to be very simple, only requiring the

addition of weighted pseudo-examples to the training

set. We allow prior knowledge that may be of any

form that provides guesses, however rough, of the con-

ditional probability of class labels for each training ex-

ample. We include one example of how such a model

can be easily built for text categorization tasks from

human-chosen keywords.

Our approach is based on the boosting-style algorithm

for logistic regression described by Collins, Schapire

and Singer (2002), and we use their results to prove a

simple convergence theorem for our algorithm.

The work in this paper arose in the development of

spoken-dialogue systems at AT&T. In these systems,

a computer must formulate an appropriate response to

the utterances of a telephone caller. A key task is the

extraction of the meaning of what the caller said to

the extent that his or her utterance can be classi�ed

among a �xed set of categories. The construction of

such a classi�er is done using machine learning. How-

ever, in many cases, the system must be deployed be-

fore enough data has been collected; indeed, real data

cannot be easily collected until the system is actually

deployed. The work in this paper permitted us to use

human-crafted knowledge to compensate for this ini-

tial dearth of data until enough could be collected fol-

lowing deployment.

We describe experiments on datasets derived from

these spoken-dialogue applications. Besides these pro-

prietary datasets, we also conducted experiments on

two benchmark datasets. In each case, we compared

boosting with and without prior knowledge. The re-

sults show that prior knowledge can substantially im-

prove performance, particularly when data is greatly

limited.

2. Boosting and Logistic Regression

We begin with a review of logistic regression and the

boosting-style algorithm for it described by Collins,

Schapire and Singer (2002). Let X and Y be

spaces of instances and labels, respectively. For now,

we assume only two labels Y = f�1;+1g. Let

(x

1

; y

1

); : : : ; (x

m

; y

m

) be a given sequence of training

examples from X � Y . When discussing probabili-

ties, we assume that all training and test examples

are selected independently from some distribution D

on X � Y .

Although our eventual goal is classi�cation, we focus

Input: (x

1

; y

1

); : : : ; (x

m

; y

m

)

where x

i

2 X , y

i

2 f�1;+1g

for t = 1; : : : T :

� let

W

t

(i) =

1

1 + exp

�

y

i

P

t�1

t

0

=1

h

t

0

(x

i

)

�

(2)

� use the W

t

(i)'s to obtain base function h

t

: X !

R from base learner; the base learner should min-

imize the objective function:

X

i

W

t

(i)e

�y

i

h

t

(x

i

)

(3)

Output �nal classi�er: f(x) =

T

X

t=1

h

t

(x)

Figure 1. A binary boosting algorithm.

on estimating probabilities which can be converted

into classi�cations in the obvious way by threshold-

ing. Speci�cally, given training data, we wish to build

a rule that estimates the conditional probability that

y = +1 given x when test example (x; y) is chosen

according to D. In logistic regression, we do this by

building a real-valued function f : X ! R and esti-

mating this probability by �(f(x)) where

�(z) =

1

1 + e

�z

:

Later, f will be of a particular form, namely, a linear

combination of base functions. Once such a model has

been postulated, we can attempt to �nd f by maximiz-

ing the conditional likelihood of the data, or equiva-

lently, minimizing the negative log conditional likeli-

hood which works out to be

X

i

ln (1 + exp(�y

i

f(x

i

))): (1)

Collins, Schapire and Singer (2002) describe a variant

of Freund and Schapire's (1997) AdaBoost algorithm

for minimizing Eq. (1) over functions f that are lin-

ear combinations of base functions. Pseudo-code for

the algorithm, which we call AdaBoost.L, is shown in

Fig. 1. Like AdaBoost, AdaBoost.L works in rounds.

On each round, a set of weightsW

t

(i) over the training

set is computed as in Eq. (2) and used to �nd a base

function h

t

: X ! R. This base function should min-

imize Eq. (3) over some space of base functions; thus,

we are using Schapire and Singer's (1999) con�dence-

rated variant of AdaBoost. After T rounds, the sum

of all the h

t

's is output as the �nal function f .

This procedure is in fact identical to con�dence-rated

AdaBoost if we instead compute W

t

(i) using the rule

W

t

(i) = exp

�y

i

t�1

X

t

0

=1

h

t

0

(x

i

)

!

:

2.1 Convergence

We can use the results and techniques of Collins,

Schapire and Singer (2002) to prove the convergence

of this algorithm to the minimum of Eq. (1), provided

the base functions have a particular form so that the

space H of base functions is semi-�nite, meaning that

H contains a �nite set of functions G for which:

1. every function in H can be written as a linear

combination of the functions in G, and

2. �g is in H for every � 2 R and g 2 G.

Theorem 1 Assume the base functions h

t

in Fig. 1

minimize Eq. (3) over a semi-�nite space H. Then as

T ! 1, the loss in Eq. (1) for the �nal function f

converges to the infemum of this loss over all linear

combinations of functions in H.

Proof sketch: To prove the result, we only need

to show that, on each round, AdaBoost.L makes

at least as much progress as Collins, Schapire and

Singer's (2002) sequential-update algorithm applied to

the �nite set G. In particular, we note that

X

i

W

t

(i)e

�y

i

h

t

(x

i

)

= min

h2H

X

i

W

t

(i)e

�y

i

h(x

i

)

� min

�2R;g2G

X

i

W

t

(i)e

�y

i

�g(x

i

)

�

X

i

W

t

(i)e

�y

i

�

t

g

t

(x

i

)

where �

t

and g

t

are the choices that would have been

made by their algorithm. With these additional steps,

their proof of convergence is easily modi�ed.

The base learning algorithm that we use in our ex-

periments for �nding base functions is the same as

in Schapire and Singer's (2000) BoosTexter system.

These experiments all deal with text, and each base

function tests for the presence or absence of a par-

ticular word, short phrase or other simple pattern,

henceforth referred to simply as a term. If the term

is present, then one value is output; otherwise, some

other value is output. For instance, the base function

might be: \If the word `yes' occurs in the text, then

output +1:731, else output �2:171." Schapire and

Singer (2000) describe a base learning algorithm that

e�ciently �nds the best base function of this form, i.e.,

the one minimizing Eq. (3). It can be seen that this

space of base functions is semi-�nite since there are

only �nitely many terms and since a rule of this form

can be decomposed as a

0

g

0

+ a

1

g

1

where a

0

; a

1

2 R

and g

1

(respectively, g

0

) outputs 1 if the term is present

(respectively, absent), and 0 otherwise.

3. Incorporating Prior Knowledge

We now describe our modi�cation to boosting to in-

corporate prior knowledge. In our approach, a human

expert must begin by constructing a rule � mapping

each instance x to an estimated conditional probabil-

ity distribution �(yjx) over the possible label values

y 2 f�1;+1g. We discuss below some methods for

constructing such a rule.

Given this background or prior model and training

data, we now have two possibly conicting goals in

constructing a predictor: (1) �t the data, and (2) �t

the prior model. As before, we measure �t to the data

using log conditional likelihood as in Eq. (1). To mea-

sure �t to the prior model, for each example x

i

, we

use relative entropy (also called Kullback-Leibler di-

vergence) between the prior model distribution �(�jx

i

)

and the distribution over labels associated with our

constructed logistic model �(f(x

i

)). More precisely,

letting �

+

(x) = �(y = +1jx), we measure �t to the

prior model by

X

i

RE(�

+

(x

i

) k �(f(x

i

))) (4)

where

RE (p k q) = p ln(p=q) + (1� p) ln((1� p)=(1� q))

is binary relative entropy. The relative importance of

the two terms is controlled by the parameter �.

Putting these together, we get the objective function

X

i

[ln (1 + exp(�y

i

f(x

i

)))

+�RE(�

+

(x

i

) k �(f(x

i

)))]: (5)

This can be rewritten as

C +

X

i

[ln(1 + e

�y

i

f(x

i

)

)

+��

+

(x

i

) ln(1 + e

�f(x

i

)

)

+�(1� �

+

(x

i

)) ln(1 + e

f(x

i

)

)] (6)

where C is a term that is independent of f , and so can

be disregarded. Note that this objective function has

the same form as Eq. (1) over a larger set and with

the addition of nonnegative weights on each term.

Thus, to minimize Eq. (6), we apply the AdaBoost.L

procedure described in Section 2 to a larger weighted

training set. This new set includes all of the original

training examples (x

i

; y

i

), each with unit weight. In

addition, for each training example (x

i

; y

i

), we create

two new training examples (x

i

;+1) and (x

i

;�1) with

weights ��

+

(x

i

) and �(1��

+

(x

i

)), respectively. Thus,

we triple the number of examples.

1

During training,

these weights w

0

are now used in computing W

t

so

that

W

t

(i) =

w

0

(i)

1 + exp

�

y

i

P

t�1

t

0

=0

h

t

0

(x

i

)

�

1

Although, by noticing that (x

i

; y

i

) occurs twice, we can

actually get away with only doubling the training set.

(here, i ranges over all of the examples in the new

training set). The modi�cation of Theorem 1 for

weighted training sets is straightforward.

One �nal modi�cation that we make is to add a 0-th

base function h

0

that is based on �

+

so as to incorpo-

rate �

+

right from the start. In particular, we take

h

0

(x) = �

�1

(�

+

(x)) = ln

�

�

+

(x)

1� �

+

(x)

�

and include h

0

in computing the �nal classi�er f .

3.1 Multiclass problems

Up until now, we have assumed a binary prediction

problem with Y = f�1;+1g. More generally, we fol-

low Schapire and Singer's (1999; 2000) approach to

multiclass problems in which more than two classes

are allowed and furthermore in which each example

may belong to multiple classes. The intuitive idea is

to reduce to binary questions which ask if each exam-

ple is or is not in each of the classes.

In particular, suppose that there are k classes Y =

f1; 2; : : : ; kg. Each label y

i

is now a vector in

f�1;+1g

k

where the `-th component indicates if the

example is or is not in class `. Our purpose now is to

�nd a function f : X � Y ! R, and �(f(x; `)) is then

the estimated probability that example x belongs to

class `. Treating each class separately, the objective

function in Eq. (1) becomes

X

i

X

`

ln

�

1 + e

�y

i`

f(x

i

;`)

�

:

The boosting algorithm AdaBoost.L is modi�ed

straightforwardly: Maintaining weights on example-

label pairs, Eq. (2) becomes

W

t

(i; `) =

1

1 + exp

�

y

i`

P

t�1

t

0

=1

h

t

0

(x

i

; `)

�

;

and Eq. (3) becomes

X

i

X

`

W

t

(i; `)e

�y

i`

h

t

(x

i

;`)

:

As was done by Schapire and Singer (2000), our base

learner �nds rules that still test for the presence or

absence of a term, but now outputs a whole vector of

numbers (one for each class) depending on the result

of this test.

Our prior knowledge now gives guessed estimates

�(`jx) of the conditional probability that example x

belongs to class `. We do not require that �(�jx) be

a probability distribution. The objective function in

Eqs. (5) and (6) becomes

X

i

X

`

[ln(1 + e

�y

i`

f(x

i

;`)

)

Class Keywords

japan japan, tokyo, yen

bush bush, george, president, election

israel israel, jerusalem, peres, sharon, pales-

tinian, israeli, arafat

britx britain, british, england, english, lon-

don, thatcher

gulf gulf, iraq, saudi, arab, iraqi, saddam,

hussein, kuwait

german german, germany, bonn, berlin, mark

weather weather, rain, snow, cold, ice, sun,

sunny, cloudy

dollargold dollar, gold, price

hostages hostages, ransom, holding, hostage

budget budget, de�cit, taxes

arts art, painting, artist, music, entertain-

ment, museum, theater

dukakis dukakis, boston, taxes, governor

yugoslavia yugoslavia

quayle quayle, dan

ireland ireland, ira, dublin

burma burma

bonds bond, bonds, yield, interest

nielsens nielsens, rating, t v, tv

boxo�ce box o�ce, movie

tickertalk stock, bond, bonds, stocks, price,

earnings

Table 1. The keywords used for each class on the AP-Titles

dataset.

+�RE (�(`jx

i

) k �(f(x

i

; `)))]

=

X

i

X

`

[ln(1 + e

�y

i`

f(x

i

;`)

)

+��(`jx

i

) ln(1 + e

�f(x

i

;`)

)

+�(1� �(`jx

i

)) ln(1 + e

f(x

i

;`)

)] + C:

So to handle this objective function, similar to the

binary case, we create a new training set with

weights over example-label pairs: The original ex-

amples (x

i

;y

i

) occur with unit weight w

0

(i; `) = 1.

Each such example is replicated twice as (x

i

;+1) and

(x

i

;�1) where 1 is the all ones vector. Letting i+m

and i+2m be the indices of the new replicated exam-

ples, their weights are, respectively,

w

0

(i+m; `) = ��(`jx

i

)

and w

0

(i+ 2m; `) = �(1� �(`jx

i

)):

4. Experiments

In this section, we describe experiments comparing

boosting with prior knowledge against boosting with

no such knowledge, particularly when data is substan-

tially limited. We did not compare to other text cate-

gorization methods, since this was not the purpose of

the study; moreover, Schapire and Singer (2000) car-

ried out extensive experiments comparing boosting to

several other methods on text categorization problems.

Class Keywords

alt.atheism god, atheism, christ, jesus, religion,

atheist

comp.graphics graphics, color, computer, computers,

plot, screen

comp.os.ms-

windows.misc

computer, computers, operating sys-

tem, microsoft, windows, ms, dos

comp.sys.ibm.

pc.hardware

computer, computers, ibm, pc, clone,

hardware, cpu, disk

comp.sys.mac.

hardware

computer, computers, mac, macintosh,

hardware, cpu, disk

comp.win-

dows.x

computer, computers, windows, x, unix

misc.forsale for sale, asking, selling, price

rec.autos car, drive, fast, jaguar, toyota, ford,

honda, volkswagen, gm, chevrolet, tire,

engine

rec.motor-

cycles

motorcycle, honda, harley, wheel, en-

gine, throttle

rec.sport.

baseball

baseball, hit, strike, ball, base, bases,

homerun, runs, out, outs

rec.sport.

hockey

hockey, stick, puck, goal, check

sci.crypt cryptography, encrypt, cipher, decrypt,

security, secret, key

sci.electronics electronics, computer, computers, chip,

electric

sci.med medicine, doctor, science, heal, sick,

cancer

sci.space space, astronaut, nasa, rocket, space

shuttle

soc.religion.

christian

religion, christian, jesus, christ, god,

catholic, protestant

talk.politics.

guns

guns, gun, nra, brady, kill, shoot, shot

talk.politics.

mideast

mideast, israel, jordan, arafat, pales-

tinian, syria, lebanon, saudi, iraq, iran

talk.politics.

misc

politics, clinton, president, congress,

senate, congressman, senator

talk.religion.

misc

religion, jewish, christian, catholic,

protestant, god, believe

Table 2. The keywords used for each class on the News-

groups dataset.

We used two publicly available text categorization

datasets and two proprietary speech categorization

datasets. The latter datasets come from the applica-

tion that was the original motivation for this work as

described in Section 1. We chose the former datasets

because they are large, and also because they naturally

lent themselves to the easy construction of a human-

crafted model. We could not use a substantially larger

number of datasets because of the inherently intensive,

subjective and non-automatic nature of building such

models.

4.1 Benchmark datasets

In the �rst set of experiments, we used these two

benchmark text-categorization datasets:

� AP-Titles: This is a corpus of Associated Press

newswire headlines (Lewis & Gale, 1994; Lewis &

Catlett, 1994). The object is to classify the head-

lines by topic. We used the preparation of this

dataset described by Schapire and Singer (2000)

consisting of 29,841 examples and 20 classes.

� Newsgroups: This dataset consists of Usenet ar-

ticles collected by Lang (1995) from 20 di�erent

newsgroups. The object is to predict which news-

group a particular article was posted to. One

thousand articles were collected for each news-

group. However, after removing duplicates, the

total number of articles dropped to 19,466.

Prior model. Our framework permits prior knowl-

edge of any kind, so long as it provides estimates, how-

ever rough, of the probability of any example belonging

to any class. Here we describe one possible technique

for creating such a rough model.

For each dataset, one of the authors, with access to the

list of categories but not to the data itself, thought up

a handful of keywords for each class. These lists of key-

words are shown in Tables 1 and 2. These keywords

were produced through an entirely subjective process

of free association with general knowledge of what the

categories were about (and also the time period during

which the data was connected), but no other informa-

tion or access to the data. Although this step required

direct human involvement, the rest of the process of

generating a prior model was fully automatic.

We next used these keywords to build a very simple

and naive model. We purposely used a model that is

very far from perfect to see how the algorithm per-

forms with prior knowledge that is as rough as can be

expected in practice. We began be de�ning the con-

ditional probability of a class ` given the presence or

absence of a keyword w, denoted �(`jw) or �(`jw). We

let

�(`jw) =

�

0:9=n

w

if w is a keyword for `

0:1=(k � n

w

) otherwise

where n

w

is the number of classes listing w as a key-

word. In other words, if the keyword w is listed for a

single class ` then seeing the word gives a 90% prob-

ability that the correct class is `; if w is listed for

several classes, the 90% probability is divided equally

among them. The remaining 10% probability is di-

vided equally among all classes not listing w as a key-

word.

If w is not present, we assign equal probability to all

classes: �(`jw) = 1=k. We also de�ne the prior distri-

bution of classes to be uniform: �(`) = 1=k.

Given these rules, we make the naive assumption that

the keywords are conditionally independent of one an-

other given the class. We can then use Bayes' rule to

compute the probability (under �) of each class given

10

20

30

40

50

60

70

80

100 1000 10000

%
 e

rr
or

 r
at

e

training examples

data+knowledge
knowledge only

data only

Figure 2. Comparison of test error rate using prior knowl-

edge and data separately or together on the AP-Titles

dataset, measured as a function of the number of train-

ing examples.

the presence or absence of all the keywords. This be-

comes our estimate �(`jx).

Experimental set-up. For each dataset and on

each run, we �rst randomly permuted the data.

We then trained boosting, with or without prior

knowledge, on the �rst m examples, for m =

25; 50; 100; 200; : : : ;M , where M is 12800 for AP-

Titles and 6400 for Newsgroups. The remaining ex-

amples (i.e., starting with example M + 1) are used

for testing. We ran each experiment ten times and

averaged the results. We �xed the number of rounds

of boosting to 1000. We set the parameter � using

the heuristic formula 2000m

�1:66

(which was chosen

to interpolate smoothly between guesses at appropri-

ate values of � for a couple values of m). This setting

conforms to the basic intuition that, when more data

is available, less weight should be given to the prior

knowledge. No experiments were conducted to deter-

mine if better performance could be achieved with a

wiser choice of �.

Results. Figs. 2 and 3 show the results of these ex-

periments. The �gures show test error rate for boost-

ing with and without prior knowledge measured as a

function of the number of training examples. The �g-

ures also show the error rate achieved using the prior

model alone with no training examples at all. Here,

error rate means fraction of test examples on which

the top-scoring label was not one of the correct labels

(recall that each example may belong to more than

one class). The results are averaged over the ten runs.

For fairly small datasets, using prior knowledge gives

dramatic improvements over straight boosting. On

large training sets on the Newsgroups dataset, the im-

perfect nature of the prior knowledge eventually hurts

20

30

40

50

60

70

80

90

100

100 1000

%
 e

rr
or

 r
at

e

training examples

data+knowledge
knowledge only

data only

Figure 3. Comparison of test error rate using prior knowl-

edge and data separately or together on the Newsgroups

dataset, measured as a function of the number of training

examples.

performance, although this e�ect is not seen on AP-

Titles.

4.2 Spoken-dialogue datasets

We next describe experiments on datasets from two

AT&T spoken-dialogue applications. In both applica-

tions, the goal is to extract the meaning of utterances

spoken by telephone callers. These utterances are then

passed through an automatic speech recognizer. Our

goal is to train a classi�er that can categorize the re-

sulting (very noisy) text. The classi�er's output would

then be passed to the dialogue manager which carries

on with the dialogue by formulating an appropriate

response to the caller's utterance.

The two applications are:

� How May I Help You? (HMIHY): Here, the goal

is to identify a particular call type, such as collect

call, a request for billing information, etc. There

are 15 di�erent classes. We did experiments with

50 to 1600 sentences in the training set and 2991

sentences in the test set. More information about

this dataset is provided by Gorin, Riccardi and

Wright (1997).

� HelpDesk: This application provides information

about AT&T's Natural Voices text-to-speech en-

gine. For instance, the caller can ask for a demo,

price information, or a sales representative. There

are 22 di�erent classes. We trained models on 100

to 2675 sentences and tested on 2000 sentences.

The prior models were built in a similar fashion

to those used in the preceding experiments, al-

though we allowed the human more freedom in choos-

ing probabilities, and more rules were used. See

0 200 400 600 800 1000 1200 1400 1600
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Training Sentences

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

data

knowledge

knowledge + data

Figure 4. Comparison of performance using data and

knowledge separately or together on the HMIHY task.

Rochery et al. (2002) for further details. We performed

similar experiments to those described in Section 4.1

measuring classi�cation accuracy as a function of the

number of examples used during training, and com-

paring models built only with some training examples

and models built with both hand-crafted rules (prior

knowledge) and training examples.

On the HMIHY dataset, we trained the models on 50,

100, 200, 300 rounds when the number of available

training examples was respectively 50, 100, 200, 400

and up. The parameter � was selected empirically

based on the number of available training examples.

We set � to 1 when the number of training examples

was less than or equal to 200, 0.1 when it was be-

tween 400 and 800, and 0.01 when it was greater. The

dashed line in Fig. 4 shows the classi�cation accuracy

for models built on hand-crafted rules and training ex-

amples whereas the solid lines show the classi�cation

accuracy for models built either on training examples

only or on hand-crafted rules only. An improvement

in accuracy is observed when using hand-crafted rules

and training examples together. This comes from the

fact that some patterns of the hand-crafted rules are

not in the data at all or are not in a su�cient number

of sentences to have a statistical impact when training

only on the data.

In this experiment, when fewer training examples were

available (< 100 examples) exploiting human expertise

provided classi�cation accuracy levels that are equiv-

alent to models trained on four times the amount of

training data. When the number of training examples

is larger (> 100), accuracy levels become equivalent to

two times the amount of training data. When larger

than 6000 sentences were available, both models were

found to converge to similar classi�cation accuracy.

Fig. 5 shows a similar comparison for the HelpDesk

0 500 1000 1500 2000 2500 3000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Training Examples

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y data

knowledge

data + knowledge

Figure 5. Comparison of performance using data and

knowledge separately or together on the HelpDesk task.

task. We trained the models on 100, 200, 400, 600, 800,

1000 rounds when the number of training examples

was respectively 100, 200, 400, 800, 1600, and up. We

set � to 0.1 when the number of training examples was

less than or equal to 1600 and to 0.01 otherwise. Fig. 5

shows an improvement in classi�cation accuracy when

hand-crafted rules are being used. This improvement

is up to 9% absolute with 100 training examples and

drops to 0.5% when more data becomes available.

In the �gures, the knowledge-only curves are not per-

fectly at. This comes from the fact that the models

from the knowledge take into account the empirical

distribution of classes of the available training exam-

ples rather than using a uniform distribution as was

done in Section 4.1.

A further experiment was performed to evaluate the

accuracy of our classi�er when new semantic classes

are added following system training. This is the sit-

uation when new functionalities are needed following

system deployment but with no data available. Fig. 6

shows the classi�cation accuracy when four additional

semantic classes are added to the HMIHY model af-

ter being trained on 11 classes. Although the system

performance drops in general, the results demonstrate

that incorporating human judgment helps to provide

an initial boost in performance even when no data is

present.

5. Variations and extensions

We have described the extension of one particular

boosting algorithm to incorporate prior knowledge.

However, the same basic technique can be applied to

a great variety of boosting algorithms. For instance,

we have used Schapire and Singer's (1999) con�dence-

rated boosting framework in which the base functions

200 1200 1600
85

86

87

88

89

90

91

92

93

Training Examples

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

data

knowledge + data

Figure 6. Adding new semantic classes following model

training.

map to real numbers whose magnitude indicate a level

of con�dence. This choice is orthogonal to our ba-

sic method for incorporating prior knowledge. Al-

though this approach can substantially speed up con-

vergence when using a rather weak base learner, in

some settings, one may wish to use a more standard

base learner like C4.5 outputting \hard" predictions in

f�1;+1g and for which the goal is simply (weighted)

error minimization; for this, a more basic version of

AdaBoost can be used.

We also have chosen a particular method of extending

binary AdaBoost to the multiclass case, an extension

that Schapire and Singer (1999) call AdaBoost.MH.

We could instead use one of the other multiclass ex-

tensions such as AdaBoost.MR (Freund & Schapire,

1997; Schapire & Singer, 1999) as modi�ed for logistic

regression by Collins, Schapire and Singer (2002).

In fact, our approach is not even limited to boost-

ing algorithms. The basic idea of modifying the loss

function used in logistic regression by adding pseudo-

examples can be applied to any algorithm for logistic

regression.

Note that our measure of �t to the prior model given

in Eq. (4) is independent of the actual training labels

y

i

. This means that we need not limit this term to

labeled data: if, as is often the case, we have access

to abundant unlabeled data, we can use it instead for

this term.

Another idea for future research is to follow

the co-training approach studied by Blum and

Mitchell (1998) and Collins and Singer (1999) in which

we train two models, say f and g, which we force to

give similar predictions on a large set of unlabeled

data. In this case, the term in Eq. (4) might be re-

placed by something like

X

i

RE (�(g(x

i

)) k �(f(x

i

)))

where the sum is over the unlabeled dataset.

6. Conclusion

We have described a new and simple method for in-

corporating prior knowledge into boosting as a means

of compensating for insu�cient data. Our approach

exploits a statistical view of boosting �rst put forth

by Friedman, Hastie and Tibshirani (2000) which led

to a number of boosting-like algorithms for logistic

regression, including that of Collins, Schapire and

Singer (2002). We used this probabilistic interpreta-

tion as a basis for modifying the underlying loss func-

tion to incorporate the prior knowledge. As shown in

this paper, the resulting algorithm requires only the

addition of weighted pseudo-examples, and the conver-

gence of the algorithm follows from the work of Collins,

Schapire and Singer (2002).

Our experiments on text-categorization datasets in-

dicate that performance using both data and prior

knowledge can be much better than with either alone,

especially when very little data is available. This

improvement in performance is vital in applications

like the spoken-dialogue system described in Section 1

which need to be deployed before enough data can be

collected, but which can then take advantage of the

data that later becomes available following initial de-

ployment.

Future research is needed to determine the e�ective-

ness of this general technique for other kinds of learn-

ing problems, when using di�erent base learners, and

when using other methods for logistic regression.

References

Blum, A., & Mitchell, T. (1998). Combining labeled

and unlabeled data with co-training. Proceedings of

the Eleventh Annual Conference on Computational

Learning Theory (pp. 92{100).

Collins, M., Schapire, R. E., & Singer, Y. (2002). Lo-

gistic regression, AdaBoost and Bregman distances.

Machine Learning, 48.

Collins, M., & Singer, Y. (1999). Unsupervised mod-

els for named entity classi�cation. Empirical Meth-

ods in Natural Language Processing and Very Large

Corpora.

Freund, Y., & Schapire, R. E. (1997). A decision-

theoretic generalization of on-line learning and an

application to boosting. Journal of Computer and

System Sciences, 55, 119{139.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Ad-

ditive logistic regression: A statistical view of boost-

ing. The Annals of Statistics, 38, 337{374.

Gorin, A. L., Riccardi, G., & Wright, J. H. (1997).

How may I help you? Speech Communication, 23,

113{127.

Lang, K. (1995). Newsweeder: Learning to �lter net-

news. Proceedings of the Twelfth International Con-

ference on Machine Learning (pp. 331{339).

Lewis, D., & Catlett, J. (1994). Heterogeneous un-

certainty sampling for supervised learning. Machine

Learning: Proceedings of the Eleventh International

Conference.

Lewis, D., & Gale, W. (1994). Training text classi�ers

by uncertainty sampling. Seventeenth Annual Inter-

national ACM SIGIR Conference on Research and

Development in Information Retrieval.

Rochery, M., Schapire, R., Rahim, M., Gupta, N., Ric-

cardi, G., Bangalore, S., Alshawi, H., & Douglas, S.

(2002). Combining prior knowledge and boosting

for call classi�cation in spoken language dialogue.

International Conference on Accoustics, Speech and

Signal Processing.

Schapire, R. E., & Singer, Y. (1999). Improved boost-

ing algorithms using con�dence-rated predictions.

Machine Learning, 37, 297{336.

Schapire, R. E., & Singer, Y. (2000). BoosTexter: A

boosting-based system for text categorization. Ma-

chine Learning, 39, 135{168.

