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ABSTRACT
We introduce the Multiplicative Update Selector and Estima-

tor (MUSE) algorithm for sparse approximation in underde-

termined linear regression problems. Given f = Φα∗ + μ,

the MUSE provably and efficiently finds a k-sparse vector α̂

such that ‖Φα̂− f‖∞ ≤ ‖μ‖∞ + O
(

1√
k

)
, for any k-sparse

vector α∗, any measurement matrix Φ, and any noise vec-

tor μ. We cast the sparse approximation problem as a zero-

sum game over a properly chosen new space; this reformu-

lation provides salient computational advantages in recovery.

When the measurement matrix Φ provides stable embedding

to sparse vectors (the so-called restricted isometry property

in compressive sensing), the MUSE also features guarantees

on ‖α∗− α̂‖2. Simulation results demonstrate the scalability

and performance of the MUSE in solving sparse approxima-

tion problems based on the Dantzig Selector.

Index Terms— Compressed Sensing, Game Theory,

Dantzig Selector, Multiplicative Weights Algorithm.

1. INTRODUCTION
Sparse approximation is a fundamental problem in many sig-

nal processing applications; examples include compressive

sensing, probabilistic estimation, and model selection [1, 2,

3]. By sparse approximation, we mean the following: given a

matrix Φ ∈ R
m×n (M < N), a vector f ∈ R

m, find a vector

α̂ satisfying Φα̂ ≈ f , whenever it exists, such that α̂ has at

most k � n-nonzero entries.

In this paper, we focus on the sparse approximation prob-

lems, where Φα̂ ≈ f is quantified in the �∞ norm as ‖Φα̂ −
f‖∞. We prove that for every k-sparse α∗ and noise vector μ
that satisfy f = Φα∗ + μ, one can efficiently find a k-sparse

vector α̂ with ‖Φ(α∗ − α̂)‖∞ ≤ ‖μ‖∞ + O
(

1√
k

)
. This

guarantee is especially strong in high-dimensional settings of

the problem, where k/n tends to a constant. To the best of

our knowledge, this is the first �∞-based sparse approxima-

tion framework that provably works for every k-sparse α∗,

every matrix Φ as well as every noise vector μ. Our algo-

rithm to find the promised α̂ with the desiderata is dubbed

the Multiplicative Update Selector and Estimator (MUSE).

To demonstrate our approach, we study the Dantzig Se-

lector (DS) problem [4] in compressive sensing (CS). The DS

exploits �1-norm minimization to find sparse solutions α̂ sub-

ject to the constraint of ‖Φ�(Φα̂ − f)‖∞ ≤ ε. To obtain the

DS solution, one can leverage linear programming, which has

O(m2n1.5) computational complexity using the interior point

method. In sharp contrast, we show that if the sensing ma-

trix satisfies the restricted isometry property, then the MUSE

algorithm can approximate the Dantzig Selector solution ef-

ficiently in O(kM). While M is O(mn) in general, it can

be reduced to O(n log n) for many structured matrices, e.g.,

partial Fourier ensembles via the fast Fourier transform.

In our game-theoretic reformulation of the DS, we assume

the problem is normalized so that ‖α∗‖1 ≤ 1. This allows

us to view the DS problem as a matrix-game. Instead of

smoothing the matrix-game objective uniformly in the spirit

of Nesterov’s gradient approaches [5], we approximate it by

a modular objective, which features salient computational ad-

vantages. For instance, the most costly operation per itera-

tion of our algorithm is the sole application of Φ� (Φ is used

only once). We establish the theoretical convergence rate of

the algorithm: O
(
1/ε2

)
iterations are needed to obtain an ε-

approximation error. Nevertheless, the algorithm empirically

exhibits O(1/ε) convergence, matching the best known rates

based on smoothing that can be obtained by computationally

competitive first order methods [5].

2. PRELIMINARIES
For every integer n, we denote [n] .= {1, · · · , n}. Throughout

this paper, we let k be an integer smaller than n. For each

i ∈ [n], let ei denote the i-th canonical vector with one at its

i-th entry, and zero everywhere else.

For each ε ∈ (0, 1), an m× n matrix Φ satisfies the (k, ε)
Restricted Isometry Property, referred to as (k, ε)-RIP, if the

following is satisfied for every k-sparse vector x:

(1 − ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2.

The simplex Δn is defined as the set of vectors in R
n with

positive entries and unit �1 norm, and Δn
k represents all vec-

tors in Δn which are also k-sparse.

The �∞ norm of an m × n matrix Φ is defined as

‖Φ‖∞ .= max
i∈[n]

max
j∈[m]

|Φij |.
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3. SPARSE APPROXIMATION IN THE �∞-NORM

Let Φ be an m × n matrix, α∗ be a k-sparse vector in R
n,

and μ be any vector in R
m. Denote f

.= Φα∗ + μ. Sparse

approximation in the �∞-norm is then the task of finding the

optimal solution of the problem

min
α:k−sparse

‖Φα − f‖∞. (1)

To solve the sparse approximation problem, we first refor-

mulate the problem as a min-max game, and then adopt a

multiplicative update algorithm to approximately estimate the

game solution.

First we show that without loss of generality we can as-

sume that α∗ is a sparse vector in Δ2n. It is shown by Berinde

et al. [6] that by incorporating O (k log n) extra linear mea-

surements using hash functions, one can always estimate an

upper-bound for ‖α∗‖1.1 As a result, by dividing the mea-

surement vector f by the provided upper-bound, we can al-

ways assume that ‖α∗‖1 ≤ 1.

To convert the domain of the sparse approximation prob-

lem onto the positive simplex, we let Ψ .= [Φ,−Φ], and also

let x∗ ∈ R
2n be a vector whose entries are given by

x∗
i =

⎧⎨
⎩

α∗
i if α∗

i > 0 and i ≤ n
−α∗

i if α∗
i < 0 and i > n

0 otherwise.

(2)

With these transformations, it is clear that every linear com-

bination of the columns of Φ can be represented as a positive
linear combination of the columns of Ψ. Therefore, if f =
Φα∗ + μ, then f = Ψx∗ + μ and vice versa. We then define

A
.=

[
Ψ

−Ψ

]
=

[
Φ −Φ

−Φ Φ

]
, and y

.=
[

f
−f

]
.

Hence, we can rewrite the sparse approximation problem as

‖Ψx − f‖∞ = max
j∈[m]

|(Ψx − f)j | =

max
j∈[2m]

ej
� (Ax − y) = max

P∈Δ2m

P� (Ax − y) .

The last equality follows from the fact that the maximum of

a linear program occurs at a boundary point of the simplex

Δ2m. In the rest of this paper, for every P ∈ Δ2m, and every

x ∈ Δ2n, we define

L(P,x) .= P� (Ax − y) , (3)

and Lmax
.= maxP,x |L(P, x)| = ‖Φ‖∞ + ‖f‖∞.

Consequently, the sparse approximation problem in the

�∞ norm is equivalent to the problem of finding the min-max

optimal solution of L:

min
‖α‖1≤1

α:k−sparse

‖Φα − f‖∞ = min
x∈Δ2n

x:k−sparse

max
P∈Δ2m

P� (Ax − y) .

1This upper bound is at most 2‖α∗‖1. We emphasize that the our results

become more accurate if an even tighter upper-bound for ‖α∗‖1 is known a
priori.

Algorithm 1 The Multiplicative Update Selector and Estima-

tor (MUSE) Algorithm

Inputs: y, A, and parameters T , and η > 0.

Output: A T -sparse approximation x̂ for the vector x∗.

1: Set P1 = 1
2m [1]1×2m.

2: for t = 1, · · · , T do
3: Find xt .= argx minL(Pt, x).

4: For each i ∈ [2m], update Pt+1
i = Pt

i e
ηL(ei,xt)

2Lmax .

5: Let Zt+1 =
∑m

i=1 Pt
ie

ηL(ei,xt)
2Lmax .

6: For each i ∈ [2m], let Pt+1
i = Pt+1

i

Zt+1 .

7: end for
8: Output x̂

.= 1
T

∑T
t=1 xt.

Unfortunately, since we are restricted to k-sparse vectors, the

search space is non-convex, and therefore finding this game-

solution is intractable. Nevertheless, in Section 4 we intro-

duce the MUSE Algorithm, which provides a sparse approx-
imation to the min-max optimal solution.

4. THE MUSE ALGORITHM

The Multiplicative Update Selector and Estimator (MUSE)

is a repurposing of the Multiplicative Weights Algorithm

(MWA) [7]. MWA, as proposed by Freund and Schapire for

learning to play repeated games, relies on Littlestone and

Warmuth’s Weighted Majority Algorithm [8]. A pseudo-code

of the MUSE is given in Algorithm 1.

We show that running the MUSE for T = k iteration is

sufficient to obtain a k-sparse approximation to x̂. We first

define the following bilinear function with range [0, 1]:

L′(P,x) .=
1
2
− L(P,x)

2Lmax
. (4)

The following lemma is a consequence of Theorem 1 in [7],

and bounds the regret loss of the Multiplicative Weights strat-

egy in zero-sum games:

Lemma 4.1. Let T be any positive integer, and define η =

ln
(

1 +
√

2 ln(2m)
T

)
. Suppose 〈(P1, x1), · · · , (PT , xT )〉 is

the sequence of pairs generated by the MUSE Algorithm after
T iterations. Then 1

T

∑T
t=1 L′(Pt, xt) is at most

1
T

min
P∈Δ2m

T∑
t=1

L′(P,xt) + (1 +
√

2)

√
ln 2m

T
.

To highlight the impact of Lemma 4.1, we note that at

each iteration t, the solution of xt .= argx minL(Pt,x) is not

necessarily unique; however, the bound of Lemma 4.1 is valid

for every such solution. On the other hand, any such solution

can be represented as a linear combination of pure (1-sparse)
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solutions which also minimize L(Pt, x). Observe that each

minimizer xt is also a minimizer of
(
A�Pt

)�
xt. Therefore,

at each iteration, we can enforce the algorithm to output a 1-

sparse solution, corresponding to the index of the minimum

entry of A�Pt. As a result, the vector x̂ = 1
T

∑T
t=1 xt is at

most T -sparse.

To transform this to an estimate α̂ for α∗ ∈ R
n, we re-

call that the first n elements of x∗ correspond to the positive

entries of α∗, and the second n elements of x∗ correspond

to the negative entries of α∗ (Equation (2)). Therefore, the

vector α̂ can be estimated from α∗ by setting

α̂i = x̂i − x̂i+n for every i ∈ [n]. (5)

Here, we use Lemma 4.1 to show that the MUSE Algorithm

after T iterations finds a T -sparse vector α̂ with bounded �∞
loss in the measurement domain.

Theorem 4.2. Let δ be any number in (0, 1], and let x̂ be the
output of the MUSE Algorithm after T = k

δ iterations. Let α̂

be as in Equation (5). Then α̂ is a k
δ -sparse vector with

‖Φα̂−f‖∞ ≤ ‖μ‖∞+(1+
√

2)
(
2‖Φ‖∞+‖μ‖∞

)√δ ln(2m)
k

.

(6)

Proof. Observe that

min
x

max
P

L (P, x) =a max
P

min
x

L (P,x) ≥b min
x

L
(

P̂,x
)

≥c 1
T

T∑
t=1

min
x

L(Pt,x) =d 1
T

T∑
t=1

L(Pt, xt)

≥e max
P

L
(

P,
1
T

T∑
t=1

xt

)
− (1 +

√
2)Lmax

√
δ ln 2m

k
.

(7)

Equality (a) is the min-max theorem. Inequality (b) follows

from the definition of max. Inequality (c) is a consequence

of the linearity of L and concavity of min. Equality (d) is

valid by the definition of xt, and Inequality (e) follows from

Lemma 4.1 and linearity of L′. As a result,

max
P

L (P, x̂) ≤ min
x

max
P

L(P, x)+ (1+
√

2)Lmax

√
δ ln 2m

k
.

(8)

Next, we use the triangle inequality to bound Lmax:

‖f‖∞ ≤ ‖Φα∗‖∞ + ‖μ‖∞ ≤ ‖α∗‖1‖Φ‖∞ + ‖μ‖∞.

Finally, it follows from the definition of A, y, and L that

maxP L (P, x̂) = ‖Φα̂ − f‖∞, and

min
x

max
P

L(P, x) = min
α:‖α‖1≤1

‖Φα − f‖∞ ≤ ‖μ‖∞.

5. CONNECTIONS TO DANTZIG SELECTOR

In this section, we show that under standard compressed sens-

ing assumptions, one can also obtain sparse approximation

guarantees in the so-called signal domain. Throughout this

section let κ
.=

√
2 log(2n2)

m , and let B be an m × n iid{
−1√

m
, 1√

m

}
Bernoulli matrix.2 It has been shown by Candès

et.al. [1], that as long as m = Ω
(
k log

(
n
k

))
, with overwhelm-

ing probability B satisfies the (k, 0.5)-RIP.

Now let α∗ be as before, and let b = Bα∗ + ε, where

ε is a vector in R
m. Let Φ = B�B, μ = B�ε, and f =

B�b = Φα∗ + μ.
Since B satisfies the RIP, finding the exact solution of

Equation (1) leads to a k-sparse vector close to α∗. The

Dantzig Selector [4] approximates α∗ by finding the exact
solution of a relaxed convex program. In contrast, we ap-
proximate the solution of (1) using the MUSE Algorithm. We

show that with overwhelming probability, the solution α̂ of

the MUSE Algorithm is close to α∗.

Theorem 5.1. Let δ be any number in (0, 1], and assume that
the Bernoulli sensing matrix B is

((
1
δ + 1

)
k, 0.5

)
-RIP. Let

α̂ be the output of the MUSE Algorithm with inputs B�B,
B�b, T = k

δ , and η of Lemma 4.1. Then with probability
1 − n−1, α̂ is a k

δ -sparse vector with

‖α∗− α̂‖2
2 ≤

(
8 + 10

√
δ ln(2n)

k

)
κ‖ε‖2 +20

√
δ ln(2n)

k
.

(9)

Proof. Since every column of B has unit �2 norm, ‖B�B‖∞ ≤
1. Moreover, by applying Hoeffding’s inequality to every

fixed column of B, and then taking the union bound over all

n columns (see also [9]) we can show that with probability at

least 1 − n−1, ‖B�ε‖∞ ≤ κ‖ε‖2.
Therefore, it follows from Theorem 4.2, and the triangle

inequality3 that α̂ is k
δ -sparse, and ‖B�B(α∗ − α̂)‖∞ is

upper-bounded by(
2 + 2.5

√
δ ln(2n)

k

)
κ‖ε‖2 + 5

√
δ ln(2n)

k
.

We also have

‖B�(α∗ − α̂)‖2
2 ≤ ‖(α∗ − α̂)‖1‖B�B(α∗ − α̂)‖∞
≤ 2‖B�B(α∗ − α̂)‖∞.

The first inequality is Holder’s inequality, and the second in-

equality follows from the fact that both ‖α∗‖1 ≤ 1, and

‖α̂‖1 ≤ 1. Finally, observe that since α∗ is k-sparse, and

2We only provide the results for Bernoulli matrices; however, the results

are more general and can be applied to any dictionary satisfying the RIP.
3Here we approximated 1 +

√
2 by 2.5.
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α̂ is k
δ sparse, α∗ − α̂ is k

(
1
δ + 1

)
-sparse. The result then

follows from the RIP property of B:

‖α∗ − α̂‖2
2 ≤ 2‖B(α∗ − α̂)‖2

2 ≤ 4‖B�B(α∗ − α̂)‖∞.
(10)

6. EXPERIMENTAL RESULTS

In this section, we provide experimental results to demon-

strate the performance of the MUSE Algorithm. We fixed

n = 1000, k = 150 and m = 500, and repeated the fol-

lowing experiment 100 times.4 We generated a sparse vector

with random support, random sign, and unit �1 norm, gen-

erated compressive measurements in the presence of white

noise, and then recovered the signals using the MUSE. The

noise vector consists of m iid N (0, σ2) elements, where σ
ranges from 10−5 to 1.

Figure 1(a) plots the dependency between the measure-

ment domain error ‖B�B α̂−B�b‖∞ and the number of it-

erations of the algorithm. Here we let the algorithm iterate for

10, 000 iterations using the value of η provided in Lemma 4.1.

Figure 1(a) shows that the measurement domain loss consis-

tently decreases as the algorithm continues iterating; more-

over, the convergence value highly depends on σ, and the rate

of convergence is approximately 1
T (as opposed to slower rate

1√
T

expected from theory).

Figure 1(b) illustrates the signal-domain �2-error (‖α∗ −
α̂‖2/‖α∗‖2) of the algorithm. Interestingly, the data-domain

error also consistently decreases as the algorithm iterates,

even after 10, 000 iterations. Note that this does not mean

the algorithm provides a dense estimate; on the contrary, the

updates on the estimate tend to concentrate on the true signal

support. For instance, the final solution for σ = 10−5 case is

approximately 184-sparse after 10, 000 iterations.

7. CONCLUSIONS

We proposed a scalable multiplicative-update algorithm to

solve the sparse-approximation problem by reformulating the

problem as a min-max game. We proved that the algorithm

requires O(1/ε2) iterations to obtain ε additive approxima-

tion error. However, the algorithm empirically needs O(1/ε)
iterations. Future work will focus on closing the gap between

the theoretical and empirical convergence rates, enforcing

hard sparsity constraints, and on adapting the algorithm to the

other convex relaxation problems.
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