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ABSTRACT

RankBoost is a recently proposed algorithm for learningiram
functions. It is simple to implement and has strong justifss
from computational learning theory. We describe the atbori
and present experimental results on applying it to the decum
routing problem. The first set of results applies RankBoosa t
text representation produced using modern term weightiathm
ods. Performance of RankBoost is somewhat inferior to that o
a state-of-the-art routing algorithm which is, howeverrenoom-
plex and less theoretically justified than RankBoost. RaddB
achieves comparable performance to the state-of-thdemtitam
when combined with feature or example selection heuristisr
second set of results examines the behavior of RankBoosh whe
it has to learn not only a ranking function but also all aspesit
term weighting from raw data. Performance is usually, thoogt
always, less good here, but the term weighting functiondiaihp

in the resulting ranking functions are intriguing, and tip@m@ach
could easily be adapted to mixtures of textual and nontéxiaiz.

Keywords: routing, boosting, ranking, supervised learning, text
representation.

1. INTRODUCTION

Recent years have seen an explosion in applications of machi
learning to information retrieval. Some benefits of thigmest have
been algorithms with clear theoretical properties, thétgtd han-
dle both textual and nontextual data, and, occasionaltiebeffec-
tiveness. However, this new attention has fallen disprioqpaately
on a subset of IR tasks, in particular the classificationgagkext
categorization and document filtering.

Classification is not the only behavior one would like from IR
systems. Of even more interestr@king Ranking of documents
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by some measure of relevance is an extremely effectivefauer
strategy, one now used millions of times a day by World WidéoWe
search engines.

IR has developed many approaches for training models to rank
documents. These have been applied to both interactivehs=ar
of an existing collection, calledd-hoc retrieval and to prioritizing
new documents that arrive in the future, a task which has dome
be calledrouting.

Most IR techniques for ranking have two facets [13]. One és th
selection and weighting of terms for a particular inforroatneed.
When only a textual query is available, this process is dajleery
weighting When training data is available in the form of docu-
ments judged for relevance, the process is calelvance feed-
backin an interactive context arfitting, training, tuning, or opti-
mizationin a routing context; we will use the termodel fitting
The techniques used are often similar to those explored @hime.
learning but with the goal of ranking rather than classifarat

The second facet of ranking techniques is the conversioexef t
tual documents first into tokens for index terms (words, pbsa
n-grams, etc.) and then into numeric vectors. The process-of a
sociating a numeric value with the occurrence of an index tier
a document is variously calledgbcument weightingwithin docu-
ment weightingor term weighting We will use the last term. Term
weighting has received little attention outside of IR.

This paper reports an attempt to bring machine learningosmies
to bear on both of these facets of ranking. We adapt RankBbppst
a boosting algorithm designed to produce models for rankimg
jects, to the widely studied routing task.

Our first study applies RankBoost to documents represersted u
ing modern IR term weighting techniques. We compare itstgbil
to fit routing models to that of a state-of-the-art rankingoaithm
applied to the same text representation. Our second stsdgrdis
modern term weighting and tests whether RankBoost can &mul
neously learn both term weighting functions and a routingleho
starting only with raw textual data represented in variauss.

Our results show that RankBoost tends to overfit in the alesenc
of some additional feature selection mechanism. On a cesti
feature set however, results are quite competitive, paatity when
substantial training data is available. Interesting tergighting
functions were learned in a number of cases, suggesting apew
proach for term weighting that may be particularly usefulrion-
standard text representations.

We begin in Section 2 by discussing previous approachesrto te
weighting and model fitting for ranking. Section 3 descrilies
RankBoost algorithm. Section 4 discusses feature engimpty
support the learning of term weighting functions. Sectioa\Bews
our benchmarking methods. Section 6 details our expersramd
presents their results. Section 7 concludes the study aintsgo
some future directions.



2. BACKGROUND weak hypothesesGiven a ranking: and document, we refer to
A quandary in both relevance feedback and routing scenarios 1(d) as thescore thath assignsd. Also, h ordersd aboved' if

that the input to the learning algorithm is (almost alwaysjea h(d) > h(d'). Boosting assumes access to an algorithm or sub-
of documents classified according to binary relevance juigs) routine for generating these rankings, calledwhezk learner The
but the trained model must produceamking of future documents ~ boosting algorithm calls the weak learner many times to getae
rather than a binary classification. One way of reconcilhig inis- many rankings, and these are then combined into a singleigde
match is to train a model to estimate the probability thateudoent called thefinal or combined hypothesis
belongs to the relevant class and then rank documents baghiso The boosting algorithm proceeds in rounds. One of its main fe
probability [9]. Probabilistic retrieval [20, 19] is based this no- tures is that, during the course of its execution, it assaffisrent
tion, and parameter estimation in a Bayes independencefvark importance weightso different pairs of training documents. The
is the most common approach to training. Welgh_ts represent how important it is for the weal_< Iearnt_anhto
Conversely, one can view relevance as a matter of degree, offérentiate between the two documents (to determine whicheof
which binary relevance judgments are only a coarse reftectio two is more relevant). These weights are not maintained lfor a
training algorithm observes these coarse judgments on iraimy possible document pairs: since the boosting algorithmes goto
ing documents and attempts to produce a model estimatingthe order relevanlt documents over non-relevant documents,rﬂméﬁl
derlying degree of relevance, which is then used to rankmecis. document pairs are of the for(do, d1) where the feedback judges
Early vector space retrieval relevance feedback algositfi®, 11] dy as releva.nt andp as non-relevant. The weak Iearner choosgs a
embody this view, emphasizing the construction of a praficg simple ranking which correctly orders as many pairs as ptessi
relevant vector to which similarity can be measured. taking into account the greater importance of correctlyedru)
In recent years, IR researchers working in both framewoakeh ~ Pairs which have been assigned greater weight. As the tigori
used increased computing power to search for models thatiagpt ~ Progresses, pairs of documents that are hard to diffetentiar-
ranking effectiveness on training data [1, 3, 10]. The tizsyklgo- rectly get higher weights while pairs that are easy to difesiate

rithms have much in common with techniques from machinelear ~ getlower weights. This in effect forces the weak learnemiuoen-
ing but lack the theoretical analyses (such as proofs ofergence) ~ trate on document pairs that have been misordered by psdyiou

often pursued in machine learning. Conversely, machineiieg derived simple rankings. o
has devoted relatively little attention to ranking, altjhisome ar- The final hypothesis orders a set of new documents by asgignin
eas of statistics and social science have paid a bit moretiate 0 €ach a real-valued score. The score of a document is atedigh
This literature is surveyed elsewhere [4]. combination of the scores assigned to that document by tlad we
hypotheses.
A description of RankBoost is shown in Figure 1. RankBoost
3. BOOSTING FOR RANKING takes as input a sét of training documents composed of two dis-

joint subsetsX;, the set of relevant documents aid, the set of
non-relevant documents (as judged by a human expert). Adgus
scribed, RankBoost calls the weak learner WeakLearn reglyat

in a series of rounds. On roundRankBoost provides WeakLearn
with a set of importance weights over the pairs of trainingwdo
ments. In response, WeakLearn computes a weak hypothisis (s
ple ranking)h which, given a documeni, assigns it a real-valued
score. We later discuss the weak learners that were usedr in ou
experiments.

The importance weights are maintained formally as a distrib
tion D over pairs of training documents frofi, x X;. Since
this distribution changes after each round, we denote thei-di
bution before rounds by Ds;. The weight of a pair of training
documents(do, d1) (d: is relevant andl, is non-relevant) under
distribution D is written D, (do, d1), and we maintain the condi-
tions thatD;(do,d1) > O and_, , Ds(do,d1) = 1. (Here
and below, it is understood that this sum is over all pé&dls d )
in Xo x X;.) Initially we set all the weights equally, that is,
D1 (do,dy) = 1/(|Xo[|X1]).

The goal of the weak learner is to find a simple ranking which
misorders as few document pairs as possible, relative talitie
tribution D,. Formally, the weak learner attempts to find a weak
hypothesigi; with low weighted pair-wise disagreement

In this section we describe our approach to document rousag
ing the RankBoost boosting algorithm [5]. RankBoost is base
Freund and Schapire’s AdaBoost algorithm [6] and its resent
cessor developed by Schapire and Singer [15]. The goal dft-Ran
Boost is to produce a statistical model that, when appliea set
of documents, orders them in a fashion that approximatéstthe
order, that is, an ordering according to relevance. This tmaer-
ing may be obtained from a human expert providfegdbackin
the form of relevance judgments. We expect the true ordenng
rank all relevant documents above all non-relevant docisnéor-
mally it is a two-tier partial order. Thus the goal of RankBbs
to produce an order which places as many relevant documents a
possible at the top.

There are various methods that can be used to measure the simi
larity between the approximate order and the true orderkBamst
attempts to minimize one possible measure which wepeétwise
disagreementThis is the number of pairs of documents which the
approximate order misorders with respect to the true ofdesur
study this is simply the number of pairs of documefits, d.) for
which the approximate ranking ordefsaboved, but the feedback
judgesd; as relevant andy as non-relevant.

RankBoost approximates the true ordering by combining many
simple rankings of the documents. For example, one simple ra
ing considered in this study is based on the frequency oftacpéar
term, such as an ordering of the documents according to haw ma
times the word “treaty” appears in each. Clearly, rankingtao$
documents by the frequency of even the best single termatylik  This error can be interpreted as the probability of misardea
to place many non-relevant documents above relevant doisme  document pair chosen randomly according to distribufign

disagreg, (h) = > Dy(do,d1). (1)
do,d1: hs(do)2hs(d1)

However, the idea of boosting is to generate and combine wmifny Having obtained a hypothesis, from WeakLearn, RankBoost
ferent simple rankings in a principled manner to producenglsi next chooses a value; € R which, intuitively, is the impor-
highly accurate ordering. tance assigned th,; its computation is discussed below. Next,

Formally, the simple rankings are real-valued functioniéeda RankBoost updates the weights of all the document pairsdh au



way that pairs which are correctly ordered by (in the sense that
hs(d1) > hs(do)) get a lower weight while misordered pairs get a
higher weight (assuming for the moment thgt > 0, as it usually
will be). Finally, to ensure that the new weighis ;1 form a dis-
tribution (so thaty ", ; Ds+1(do,d1) = 1), we renormalize the
weights, resulting in the update rule shown in Figure 1.

This process of generating weak hypotheses and updating the 4.

weights is repeated fdf rounds. How we decide on a value of
T is discussed later in this section. Aft&rrounds, we havq’
hypothesed,, ..., hr, as well as the values,, . .. ,ar. A set of
new documents is then ordered according to the scores agsign
the following final hypothesi¢i: for each new documerat,

H(d) =) ashs(d).

That is, the predictions of all the weak hypotheses are atatlion
the new document, and the average of their predictions, weighted
by theas’s, forms the score assigned doby H. To generate an
ordered list, the set of new documents is sorted decreagiagdre.
We now discuss the exact choice®f. Freund et al. [5] prove
that the pair-wise disagreement (Eq. (1)) of the final hypsith
H is bounded above by the product of the normalization factors
Hstl Zs. Thus, to minimize Eq. (1), on each round we should
choosex to minimize Z;. For general weak learners whose hy-
potheses assign documents arbitrary real numbers, theyestug
finding s via numerical search. This is the method we used in
combination with the weak learner WeakReal, discusseceinéixt
section. If the hypotheses generated by the weak learnerthav
range{0, 1}, as is the case with our other weak learner, Weak-
Threshold, Freund et al. provide a direct calculationof

1
aszéln<1-|_-:s)

rs =Y D(do,d1)(hs(dr) — hs(do))-

do,d1

2
where

(©)

To understand what this choice entails, suppose that ayhigilu-
rate weak hypothesik; has been found. Then will be close to

1 anda; will be large. This translates into more drastic updates to
the distribution and a greater weight assigned to the piiedi of

hs in the computation of the final hypothesis. On the other hdnd,
hs is about as accurate as a random ranking of documentsythen
will be close to 0 andy; will also be close to 0. Thus, the updates
to the distribution will be quite conservative, and the jrgdns of

hs in the final hypothesis will receive rather low weight.

For our task, we allowy; to be negative. This will be the case
whenever a weak hypothesis is found withr, < 0, indicating
thath, is negatively correlated with the data. Such a hypothesis ca
be useful if we use the opposite of its predictions. Howex@rgak
hypothesigh may be output multiple times during the boosting pro-
cess, and we do not allow itsimulativeweight> ., _, a, tobe
negative. We impose this restriction to reduce the dangewer-
fitting.

In our experiments, we implemented a more efficient version o
RankBoost given by Freund et al. [5]. Its behavior is exatitly

Input a setX of documents separated into disjoint subsets
X of relevant documents ankly of non-relevant documents;
Initialize V(do,dl) S Xo X X1 : Dl(do,dl) = 1/(‘X0| |X1|)
Dofors=1,...,T:

1. Train WeakLearn using distributiabs over Xy x Xj.
2. WeakLearn returns a weak hypothésis: X — R.
3. Computens € R.
Update:v(do,dl) € Xo X X1
Dg(do,d — hs(do) — hs(d
Do (o dy) — D200 exp (“ats (ado) = (1))

whereZ; is the normalization factor:

Zs = Y Ds(do,d1)exp(—as (hs(do) — hs(d1))) -
do,d1

T
Output the final hypothesisH (d) = » _ ashs(d).
s=1
Figure 1: RankBoost algorithm for document routing

3.1 Weak learners

We now discuss the two weak learners used in our experiments.
Since a weak learner is called on each round of boosting, we us
the notation of the previous section, omittingubscripts. A weak
learner takes as input a distributi@hover the document pairs and
a set of N ranking features A ranking feature is a function that
assigns a real-valued score to a document. A ranking feistaigo
allowed to leave some documents unranked, which we indimate
a “score” of L. For instance, the value of a ranking feature might
equal the term frequency of the wotekaty in the document, or
equal_L if treatydoes not appear in the document.

The weak learner uses the ranking features to form its weak hy
pothesis, attempting to find one with small pair-wise disagnent
relative to distributionD. Rather than minimize this quantity di-
rectly, the weak learner finds a weak hypothesis which mirgsi
Z, the normalization constant in Figure 1, which is an uppemio
on the pair-wise disagreement, as discussed in the presémti®on.

We describe two weak learners which differ in the types ofkvea
hypotheses they generate. The first weak learner, Weakséteal,
ply selects one of the available ranking features to be thakwe
hypothesis. Thus its weak hypotheses are real-valuedifunsct
(In our study, a score aof is treated as a zero score for this weak
learner.) The second weak learner, WeakThreshold, alsatsel
a ranking feature, but converts it into a binary (0-1) fuotby
choosing a threshold score. The thresholded feature judiyas
ments with scores above the threshold as relevant (scorgaofdl
documents with scores below the threshold as non-relegantd
of 0). A score of L could be mapped to either 1 or 0, but in this
study it is always mapped to 0.

WeakReal. This weak learner searches for a ranking feature
which minimizesZ. To achieve this, for each ranking feature, the
algorithm calculates ther which minimizesZ by running New-
ton’s method for a fixed number of steps. We were able to imple-
ment this numerical search in time proportionahtd" , | Xy, |, the
sum over all features of the number of documents ranked by eac
feature (details omitted for lack of space). If the rankiegtfires
are associated with terms, for example, then this numbexaistly

same as that of the pseudocode given in Figure 1. The code inthe size of an inverted index for these terms.

Figure 1 runs in time proportional 40X, || X1 |, whereas the more
efficient code (omitted due to the lack of space) runs in time p
portional to| Xy |+ | X1 |. This is a significant speedup for large text
collections such as TREC. Note that this time does not ircthe
running time of WeakLearn; however, a similar speedup isiptes
for all of the weak learners used in our experiments.

WeakThreshold. This weak learner takes a set of ranking fea-
tures{ f; } and outputs a weak hypothesis of the form

1 if fi(d)>#
h(d)—{ 0 if fi(d) <6orfi(d) =L

To implement the weak learner efficiently, we search’féo max-

4)



‘ Rocchio- ‘ RankBoost with

QZ-DFO | WeakReal| WeakThreshold
Reuters-21578
all topics 0.6786 0.6284 0.5836
> 5rel. test| 0.8078 0.7501 0.7446

Table 1. Non-interpolated average precision results for
Reuters-21578 and TREC-3. RankBoost uses all terms that oc-
cur in at least two positive training documents as featuresThe
WeakThreshold version uses th&) representation (Section 4.3)
based on the same terms. The second Reuters line gives result
restricted to the 59 topics with at least five relevant test dou-
ments.

imize |r| (as defined in Eq. (3)) rather than minimize This
is justified since Freund et al. [5] show that, for binary wésgk
potheses weighted usingas computed in Eq. (2§ < V1 —r2.
WeakThreshold searches frby checking all possible thresholds
of all features. This can be done very efficiently, as describ

by Freund et al. [5] who show how the search can can be carried

out in time proportional tozﬁvzl | Xy, |, the same running time as
WeakReal. This is the implementation we used in our experime

Note that WeakThreshold treats unranked documents asyif the
are ranked below every ranked document.

Choosing the number of rounds. Finally, we need to specify
how we set the number of rounds Intuitively, as boosting runs
for more rounds, the final hypothesis it outputs grows laayet
more complicated. Although a larger final hypothesis prsditore
accurately on the training data, it may overfit and not gdizera
well to future data. Thus we want to use the training data fecse
T in a fashion that minimizes the risk of overfitting. Althoutjiere
are theoretical analyses of the number of rounds neededémtb
ing [6, 14], these tend not to give practical answers; tleegfwe
use heuristics to estimate a good number of rounds of bapsitie
found that the following rule yields good results. When rimgron
a particular topic, we looked at the number of features inféae
ture set (see Section 6.1) and the number of positive exaniple
the training set, and we s&tto be the smaller of the two.

4. TERM WEIGHTING BY WEAK
HYPOTHESIS FORMATION

While RankBoost is quite different from typical learning-ap
proaches to routing, the ranking function it produces wheedu
with WeakReal has a common form: a linear model applied to
real-valued term weights. Since term weighting approadbes
handling within document frequency and document lengtrehav
been highly optimized for use with linear models, there seém
tle reason to explore alternative term weighting approsciieen
WeakReal is used.

However, when RankBoost is used with WeakThreshold, the ran
ing function is a linear combination of thresholded featuad-
ues, a model structure rarely used in IR. Applying a stantezd
weighting function seems peculiar with such a model, simee t
real-valued feature values would simply be thresholded1o\0/e
instead explored the possibility of using a very raw repmestén
of the document content. RankBoost can then implicitly tores
a separate term weighting function for each term by chooaid
weighting multiple thresholded weak hypotheses for thentéiVe
describe in this section the nature of the term weightingtions
produced using each of several raw representations of text.

Rocchio- RankBoost with
QZ-DFO | WeakReal| WeakThreshold

Reuters-21578

all topics 0.6786 0.6956 0.5817

> 5rel. test 0.8078 0.8455 0.7483
TREC-3

all documents 0.4669 0.3974 0.4276

top 1,000+ rel. | 0.4669 0.4638 -

Table 2: Non-interpolated average precision results for
Reuters-21578 and TREC-3. RankBoost here is restricted to
using features given a nonzero weight by Rocchio-QZ-DFO.
The WeakThreshold version uses th&Q representation (Sec-
tion 4.3). The second Reuters line gives results only on tas
with at least five relevant test documents. The second TREC
line gives results for the top 1,000 test documents as rankeay
Rocchio-QZ-DFO, plus any remaining relevant test documerst.

4.1 Therawtf representation

In the simplest case we define one ranking featfirefor each
termt, wheref,(d) is equal to the ravf (number of occurrences)
of term¢ in documentd. If there are no occurrences ofn d, we
can view the feature as not ranking the documégptd) = L) or
as having af of 0 (f:(d) = 0): the effect is the same with our use
of WeakThreshold. We call this thawtf representation.

A weak hypothesisi(d) produced by boosting with theawtf
representation has the form:

1 iftE> 6
h(d):{ 0 iftf<f

where# is a threshold, andf is the within document frequency
of some term. Each such hypothesis is given a weighly the
boosting algorithm, so the above hypothesis contributesa doc-
ument’s score if thé¢f of the selected term i3 6 and contributes 0
otherwise.

However, the final hypothesi# (d) used to rank documents is
a weighted combination of many weak hypotheses of the above
form. RankBoost may choose several weak hypotheses based on
the same indexing term. Each such hypothesis may have eetliffe
thresholdd and weighta.. Therefore, the overall contribution of a
term to documend’s score is a step function produced by summing
all weak hypotheses derived from that term:

we > 6,
Wp_1 If tf > #,_1 andtf < 8,
g(d) = Wn—2 if tf > Orn—o andtf < On—1

0 iftf<6,

wheref,, > 6,_1 > --- > 6; are the set of thresholds seen in
weak hypotheses for this term. Thg's result from summing the
a’s for all weak hypotheses that are based on the term anddkiat h
thresholds< 6;. Note that this implies thabv, > wp—1 > --- >
0, since, as discussed in Section 3.1, we force WeakThresbold
produce a cumlative nonnegative weight for each weak hygsigh
In other words, as in conventional within document weigitin
functions, larger values ¢f cause a term to have a larger contribu-
tion to a document’s score. The differences are that (1) fkt@w
document weighting function is a step function rather thaom
tinuous function such dsg tf, and (2) the function is learned rather
than prespecified and is different for each term.
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Figure 2: Comparison of RankBoost with WeakReal and
Rocchio-QZ-DFO on Reuters-21578 (left) and TREC-3 (right)
text collections. Each point in each scatterplot shows theest
average precision of the two competing algorithms on a singl
topic. The z- and y-coordinates of each point give the test av-
erage precision of Rocchio-QZ-DFO and RankBoost (respec-
tively) on the given topic.

4.2 Thelength feature and therawtf&length
representation

It is common in term weighting to usgocument length normal-
ization i.e. to reduce the scores that long documents would oth-
erwise get. The rationale is that long documents will tentawee
higher tf values for all terms, regardless of the actual content of
the document. Document length normalization approaches asi
cosine normalization or pivoted normalization [17] use slaene
normalization formula for each ranking task that is presént

We investigated learning a customized document length alerm
ization for each ranking task. We defined a ranking featergth(d)
whose value equals the negative of the document length tetihe
occurs in the document and otherwise. We negate the length be-
cause WeakThreshold uses positive weights:andsts on thresh-
olds, and we want shorter documents to get a boost to theaie sco
not longer ones. A weak hypothesis based orlgéhgthfeature has
the form:

1
0

where we have reversed the inequalities rather than writieg
negated document lengths. As with all weak hypothesesptiés
will have some weightx. The cumulative effect of all weak hy-
potheses based on the length feature is a step function itrest g
a large positive contribution to short documents with thetgbu-
tion decreasing as document length increases. (Sectigiv@2an
example.)

We refer to the representation that includes bothrévetf and
lengthfeatures as theawtf&lengthrepresentation.

if length< 6

h(d) if length> 6

4.3 TheQ (quadrant) representation

Thelengthfeature allows only an overall downweighting of long
documents. It is also possible to define features that alldaca-
ment length to affect each term differently. In this repreagon,
we define multiple ranking features for each term, one fohafic
value observed for the term on the training corpus. The \ailtiee
featuref: , on documentl is the negated document length if that
term has df > u on the document andl otherwise.

By selecting a featurg,,,,, WeakThreshold is implicitly choos-
ing a threshold ofx on thetf value oft. Then, as always, Weak-
Threshold explicitly chooses a threshélan f; ., (d), the negated
length ofd. The resulting weak hypothesis therefore is based on
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Figure 3: Comparison of RankBoost with two weak learn-
ers, WeakReal and WeakThreshold on Reuters-21578 (left) &
TREC-3 (right) text collections. WeakThreshold uses the).
representation. (See Figure 2.)

two thresholds:
na) = {

We call this representation tlggiadrantor Q representation since

the set of documents assigned a value of 1 by a weak hypothesis
is a quadrant ofength x tf space. The cumulative effect of all
weak hypotheses based on a single term is a complicateddnnct

of document length antf value. (See Figure 5 for an example.)
We hypothesized that the functions learned in this manneddvo

be similar and possibly superior to conventional term wegh
functions. Section 6.2 examines this question.

1 if tf > wandlength< 6
0 otherwise.

5. METHODS

This section reviews the datasets that we tested the bgaatin
gorithms on and the standard IR techniques that we complaeed t
to.

5.1 Datasets

Our studies used two datasets previously used in a studyostbo
ing for text classification [16] and used the same procedfoes
processing those datasets. The TREC-3 routing dataseistons
of 741,856 training documents and 336,310 test documests di
tributed on TREC disks 1-3. We used fifty TREC topics (numbers
101-150) and corresponding relevance judgments from tHeCFR
3 routing evaluation [8]. Textual queries for each topicsexiut
were not used in our experiments.

While the TREC-3 routing dataset and other TREC routing col-
lections are the most widely used benchmark for machinailegr
of ranking functions, their size was problematic for ourtptgpe
code. We therefore used as our second dataset the muchrsmalle
Reuters-21578 collection. The Reuters-21578 collectmmsists
of 21,578 documents which appeared on the Reuters newswire i
1987. Each document has been categorized with respect Ito eac
one of 135 financial topic categories. We used the “ModAppdit s
of the data into 9,603 training documents, 3,299 test doatsne
and 8,676 documents which are ignored. We used the 90 casgor
that have at least one positive training instance and atde&spos-
itive test instance under this split. Some results are alssemted
for the set of 59 categories that have at least one positaia-tr
ing instance and at leafive positive test instances under this split,
since test set average precision figures are less erraticdee cat-
egories:

!More details on the collection are available at

http://ww.research. att.com ~| ewi s.



Both datasets were indexed using standard SMART tokeaizati
stoplists, and phrase formation [16]. Experiments uséduberawtf
(SMART triple nnn) or log tf pivoted normalizationl{nu) versions
of the data produced by SMART.

Note that most studies on Reuters-21578 have used effeetige
measures for binary classification. Our use of Reuters-216@s
a surrogate routing dataset, and so we evaluate our resutistb
it and TREC-3 using non-interpolated average precisionideiyw
used measure of ranking effectiveness. Average precisasrcam-
puted using the standard TREC evaluation software.

5.2 Comparing with a state-of-the-art
routing method

A wide range of highly tuned learning algorithms for prodwgi
ranking functions have been explored in the TREC routindueva
tions. Some of the consistently most successful approd2hag]
are multipass optimization algorithms initialized usingdehio’s
relevance feedback formula [12, 11]. We therefore compéred
effectiveness of RankBoost with the latest in this seriealgb-
rithms. This version, which we will call Rocchio-QZ-DFO leer
incorporates dynamic feedback optimization [3] and quenyirzg
[18]. The algorithm has 5 parameterized phases and is tesirn
detail elsewhere [16].

6. EXPERIMENTS

We now report our experimental results on applying RankBoos
to train ranking models. Study 1 focuses on issues of modieldit
while Study 2 focuses on the character of learned term wieight
functions.

6.1 Study 1: Boosting with real-valued weak
hypotheses

Our first study focuses on the properties of RankBoost using
WeakReal as a weak learner applied in a standard IR context. W
therefore used a standard text representation for docsnoemi
sisting ofLnu weighted words and phrases. That is, each ranking
feature is associated with a term whose value is given blrits
weight for that document. The resulting final hypothesihere-
fore a linear combination of the within document weightsd®et
of terms.

We first ran RankBoost with candidate weak hypotheses corre-
sponding to all terms that occurred in at least two positramnt
ing instances of the class. With this as the only featurectielg
RankBoost's performance was worse than Rocchio-QZ-DF@'s o
the Reuters collection (Table 1). RankBoost gave betteragee
precision than Rocchio-QZ-DFO on only 22 of the topics, whil
Rocchio-QZ-DFO was better on 61. Averaged over the 90 topics
RankBoost's non-interpolated average precision was 7.4¥sev
than Rocchio-QZ-DFO's. If we restricted topics to those tied
at least 5 test examples, the difference was still 7.1%.

These initial results suggested that RankBoost was doirgg-a b
ter job of weighting features than selecting them, so weexinjed
that restricting it to use a high quality feature set woukltein bet-
ter effectiveness. We tested this by simply restrictingkBmost to
use exactly the features that Rocchio-QZ-DFO selects. Sigisf-
icantly improved the effectiveness of RankBoost/WeakRfam
0.6284 to 0.6956), as seen in Table 2, so that RankBoost naev is
tually performing slightly better than Rocchio-QZ-DFOghkie 2
(left) shows in a scatterplot how RankBoost compares to Rioec
QZ-DFO on all 90 topics in the Reuters collection. Now Rank-
Boost outperforms Rocchio-QZ-DFO on 53 topics, while Rogeh

QZ-DFO has the advantage on only 29 topics (and tied on the re-

maining 8 topics).
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Figure 4: For two TREC-3 topics, the pairwise disagreement o
atest set for RankBoost with WeakReal, measured as a functio
of the number of rounds of boosting.

We next compared RankBoost (with Rocchio-QZ-DFO feature
selection) to Rocchio-QZ-DFO on the TREC-3 collection. Our
current implementation of RankBoost with WeakReal is tamsl
to run on all of the available training data, even with featse-
lection. We instead trained RankBoost using the top 10,020 d
uments ranked by Rocchio-QZ-DFO, plus any remaining releva
documents. Rocchio-QZ-DFO, on the other hand, was trained o
the entire corpus. As Table 2 and Figure 2 (right) show, Rank-
Boost’s performance (0.3974 average precision) was stlise/
than Rocchio-QZ-DFQO's (0.4669 average precision), thotigh
still better than all but one of the 49 original TREC-3 runk [8

We believe that the inferior performance of RankBoost on the
TREC-3 data is due in large part to the limited dataset used in
training, since it certainly had very different statistipaoperties
from either the entire training set or the entire test set. teki
this hypothesis, we evaluated RankBoost on a test set sdlett
a similar manner to that used in choosing the training sehehg
the top 1,000 test documents (as ranked by Rocchio-QZ-D&O) t
gether with all remaining relevant documents. On this mionééd
test set, RankBoost’s performance (0.4638 average poaigias
comparable to that of Rocchio-QZ-DFO, as can be seen in Pable
(Rocchio-QZ-DFO's effectiveness does not change whemated
on this subset, because the TREC evaluation software okfs ta
into account the top 1000 retrieved documents when congpefin
fectiveness.)

One of the problematic aspects of RankBoost is choosing the
number of rounds of boosting to perform. In the above experi-
ments, we used the heuristic presented in Section 3. Hoigalrit
is the choice of the number of rounds? We found that RankBoost
tended to exhibit two sorts of behavior. On some topics, Rank
Boost overfit badly, meaning that the pairwise disagreeroard
test set, as a function of the number of rounds of boostinigktyu
reached a minimum and then rose significantly. This can be see
in the learning curve for TREC-3 topic 134 in Figure 4. On othe
topics, however, RankBoost did not overfit; instead, thewiae
disagreement continued to drop, eventually reaching ampisge.
This behavior is seen in Figure 4 for TREC-3 topic 117. Theter
case seems to occur on topics with few relevant documerdghan
also is the case in which RankBoost'’s performance is masitliio
be worse than Rocchio-QZ-DFQO’s. Conversely, RankBoosigen
to perform much better in the latter case. Thus, overfittingap-
ics with few relevant documents seems to be a significantecalis



rawtf | rawtf&length Q
Reuters-21578
all features 0.6420 0.6557 0.5836
Rocchio features 0.5834 0.5952 0.5638
TREC-3
all features 0.3797 - 0.4233
Rocchio features 0.3909 - 0.4276

Table 3: Non-interpolated average precision results for
Reuters-21578 and TREC-3 using RankBoost with Weak-
Threshold. Six text representations are compared: rawtf,
rawtf& length, and Q (Section 4.3), plus the versions of these re-
stricted to features selected by Rocchiorqwtf ., rawtf&length,,
and Q). TREC-3 data for the ramtf&length representations
was lost due to a bug.

failure for RankBoost.

6.2 Study 2: Learning term-weighting
functions from raw data

Our second study tested the ability of RankBoost to extrffete
tive term weighting functions from raw data. We began witlv ra
tf (nnn) vectors and converted them into sets of ranking features
of the formsrawtf, rawtf&length and Q described in Section 4.
Document length was computed as the sum of thwalues for
words (not phrases) in that document. We also produced @rune
sets of ranking features for each topic using only the festas-
signed nonzero weight by Rocchio-QZ-DFO (as in Study 1). We
refer to these pruned feature setsrasitf,., rawtf&length,, and
Q@-. Results with these Rocchio-QZ-DFO-pruned feature sete we
slightly better in general, so we concentrate on them here.

RankBoost with the WeakThreshold weak learner was appdied t
training data represented in each of these forms. Boostipgped
after the number of rounds specified by the heuristic in 8a@il.
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Figure 5: Contribution of dollar for different tf values and doc-
ument lengths underrawtf,., rawtf&length., @, and Lnu rep-
resentations.

For ourQ features, however, the feature values were document
lengths. These vary more th&nvalues, so selection of multiple
thresholds was more common. We give a particularly intargst
example in the next section.

An example of learned weighting functions.  Figure 5 plots
four term weighting functions for the terdollar on Reuters topic
DLR (stories about the US dollar). This term, the best predictor
the DLR topic, has a nonzetbon 628 Reuters training documents,
124 of which are drawn from the 131 positive training insesof
the DLR topic.

The z-axis of the plots is the document length, and ghaxis is

The learned model was run on the test data as represente@ by ththe rawtf of dollar. The gray scale intensity encodes the contribu-

same type of ranking features used in the training.

Results are summarized in Table 3. Restricting the reptasen
tions to features chosen by Rocchio-QZ-DFO helps for TRED3
hurts for Reuters, perhaps because of the larger amounbeiel
data available for Reuters. TH@ representations are better for
TREC-3 but worse for Reuters, probably due to the greategeran

tion thatdollar makes to the score of a document with this length
and thisdollar tf. Intensities are normalized so that an average
length document (75 non-stopword tokens) witthadlar tf of 1 has
the same intensity on all graphs.

The upper left plot shows the contributiondllar for the rawtf .
model. A total of 19 weak hypotheses with 3 thresholds among

of document lengths for TREC-3. In no case does the mean valuethem were selected in the first 69 rounds. Document lengtbtis n

of noninterpolated average precision for RankBoost withakYe
Threshold exceed that for Rocchio-QZ-DFO. Table 2 compares
the @, results for RankBoost/WeakThreshold with those for Rank-
Boost/WeakReal and Rocchio-QZ-DFO. Figure 3 plots thisadat
in more detail. RankBoost/WeakReal substantially outgers
RankBoost/WeakThreshold (again using €herepresentation) on
Reuters, while results are mixed on TREC. Overall, the tiokes

ing method did not appear to have produced term weightingg qui
as good as the traditional highly tuned methods.

We hypothesized in Section 4 that RankBoost/WeakThreshold
would, by selecting multiple weak hypotheses based on tine sa
term but with different thresholds, learn topic-specifithin docu-
ment weighting functions. This happened in some cases, brg m
often all weak hypotheses for a term used the same thregbenid,
ticularly with therawtf and rawtf&length variants. In retrospect,
this is not surprising. For boosting to select differenesirolds
of a ranking feature on different rounds, that ranking femtmust
have not only substantial overlap with both positive andatieg
training instances but also a substantial variation in tavalues
among those instances.

explicitly represented in this feature set, so the modelta&n it
into account only by giving highf's slightly less weight than it
might otherwise do.

This can be seen (though only barely without a color plot) by
comparing the upper left and upper right plot. The uppertrigh
plot shows the contribution afollar (19 weak hypotheses cover-
ing 4 thresholds) for theawtf&length, model. The contribution
of adollar tf of 4 is 5.48811 in theawtf&length. model, which
has the ability to downweight long documents, but only 51874
in the rawtf, model. More impact can be given larger tf's in the
rawtf&length. model, because tHengthfeature keeps long docu-
ments from having inappropriately high scores.

Therawtf&length, model in fact incorporates 20 weak hypothe-
ses (covering 10 thresholds) derived from tbegthfeature. The
combined effect of these is a decreasing contribution faruedo
ment length, ranging, in 11 steps, from 3.30744 for docuseith
length 11 or less, down to 0.0 for documents with length great
than 149.

The lower left plot shows the effect of the 19 weak hypotheses
for dollar in the ), model. Among the 19 weak hypotheses are



11 distinct ones representing 6 differ¢hthresholds and 8 differ-
ent length thresholds. The effect is similar to that of stadderm
weighting functions: a contribution that increases vtitat sublin-
ear pace, but where higfs have less impact for long documents
than short ones.

However, the plot also shows a glaring problem with the tesul
ing term weighting function. Documents with a length gre#tan
430 get no contribution fodollar, no matter how many times it
appears. The problem is that any given training set has aing
positive example, and RankBoost will see no advantage tmget
a threshold longer than that length. For our approach to aetipr
cal, the system will need to be given some bias in favor of it&fin
length thresholds.

For comparison, the lower right plot shows the contributidn
dollar underLnuweighting, as used by RankBoost/WeakReal and
Rocchio-QZ-DFO. Sincenuweights are not a function of the sum
of tf's, we cannot computenu’s for hypothetical documents on the
grid. We instead plot the actual valuedsllar's Lnuweight for all
Reuters training and test documents. The pattern is nosiijar
to that learned with the), representation, showing that, for this
term at least, RankBoost has induced a sensible term wegghti
function from raw data.

7. CONCLUSIONS AND FUTURE WORK

We have presented preliminary evidence that RankBoosta si
ple boosting algorithm with strong theoretical foundasioran learn
ranking models with effectiveness roughly comparable i tf
leading edge routing algorithms developed in IR. We belieee
can strengthen the case for RankBoost by replacing our use of
Rocchio-QZ-DFO for feature selection (a choice made foveen
nience) with a simpler and theoretically motivated feagekection
method. We also hope to produce a more efficient implememntati
of RankBoost that would eliminate the need for example sielec

Our results show that a boosting approach applied to a raw cha
acterization of document contenf\eights and document lengths)
can, in some cases, learn term weighting functions sirmoléndse
used in IR. For most terms, however, only one or two distireaky
hypotheses were used, giving a crude treatment of term weggh
for that term.

Attempting to learn a separate term weighting function facte
term is perhaps too much to ask from any reasonably sizedrtgai
set. An alternative would be to allow great flexibility in teang
the term weighting function, but force the same functionéabed
for all terms. This might be viewed as an automated versighef
exploratory data analysis approach to term weighting ppeddy
Greiff [7].

In any case, our approach of inducing term weighting fumstio
from raw data is perhaps of less interest for ranking baseebanal
features (where highly refined term weighting methods aeadly
known) than for ranking based on nontextual or mixed nortixt
data, a less well studied task that is of interest in text ngjrappli-
cations.

As a final note, all our experiments assumed binary relevance
feedback, but RankBoost can equally well work with graddé-re
vance judgments. This raises the possibility of learningmuio
completely relevant examples are available, as long asvjedts
of degree of partial relevance are possible. This is oftenctise,
for instance, in Web search, and we plan to investigate theofis
RankBoost there.
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