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Abstract

Boosting algorithms with l1-regularization are of
interest because l1 regularization leads to sparser
composite classifiers. Moreover, Rosset et al.
have shown that for separable data, standard lp-
regularized loss minimization results in a margin
maximizing classifier in the limit as regulariza-
tion is relaxed. For the case p = 1, we ex-
tend these results by obtaining explicit conver-
gence bounds on the regularization required to
yield a margin within prescribed accuracy of the
maximum achievable margin. We derive simi-
lar rates of convergence for the ε-AdaBoost algo-
rithm, in the process providing a new proof that
ε-AdaBoost is margin maximizing as ε converges
to 0. Because both of these known algorithms are
computationally expensive, we introduce a new
hybrid algorithm, AdaBoost+L1, that combines
the virtues of AdaBoost with the sparsity of l1-
regularization in a computationally efficient fash-
ion. We prove that the algorithm is margin maxi-
mizing and empirically examine its performance
on five datasets.

1 INTRODUCTION

Boosting is a technique for constructing from a finite
dataset a composite classifier as a linear combination of a
given large set of weak classifiers. Typically, it is assumed
that for every distribution, there exists one weak classifier
whose error is slightly below chance, and the objective is
to construct a composite classifier with a much lower prob-
ability of misclassification. AdaBoost was the first prac-
tical boosting algorithm (Freund & Schapire, 1997), and
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many other generalizations and extensions have since been
proposed (see, for example, (Meir & Rätsch, 2003) and
(Schapire, 2002) for overviews).

Theoretical work on boosting’s ability to generalize have
centered on two approaches. The first relies on sparsity,
i.e., a limit on the number of weak classifiers with non-
zero weights, or alternatively, a bound on the magnitude
(say, the l1-norm) of those weights (Freund & Schapire,
1997; Lugosi & Vayatis, 2004; Zhang & Yu, 2005). Spar-
sity may be desirable not only for generalization perfor-
mance, but also as a means of identifying a small set of
useful features. Sparsity can be enforced using early stop-
ping or regularization, although AdaBoost often performs
well even when neither of these techniques is employed.
In an alternative approach, AdaBoost can be analyzed by
showing that it achieves large margins on the training data,
and that these large margins are sufficient to guarantee good
test performance (Schapire et al., 1998). This paper focuses
on the intertwined relationship between these important as-
pects of boosting, namely, sparsity, regularization and large
margins.

Rosset et al. (2004b) have shown that for separable data,
standard lp-regularized loss minimization results in a mar-
gin maximizing classifier in the limit as regularization is
relaxed. So, for datasets that admit classification using
a sparse but unknown set of features, l1-regularized loss
minimization offers two potential advantages: (1) a sparse
composite classifier with (2) a large margin on the training
data. The major disadvantage of standard l1-regularized
loss minimization over a huge space of weak classifiers is
the considerable computational burden. As an alternative,
Hastie et al. (2001) studied the ε-AdaBoost algorithm in
which the coefficient of a selected weak classifier is in-
creased by a small amount ε at each iteration, instead of
the potentially large step size of AdaBoost. This algorithm
is slow but simpler to implement and shares some proper-
ties of l1-regularized loss minimization. In particular, as ε
converges to 0, the classifier attains the maximum possible
margin on the training data (Zhang & Yu, 2005).

In Section 3 we extend Rosset et al.’s results when p = 1
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by deriving explicit bounds on the regularization parame-
ter to ensure the composite classifier margin is within pre-
scribed accuracy of the maximum achievable margin. For
completeness, in an appendix we derive similar results for
ε-AdaBoost and give a new proof that it is margin maxi-
mizing. (See also (Zhang & Yu, 2005).)

Known methods for solving the regularized loss minimiza-
tion problem are computationally expensive. To address
this, in Section 4 we introduce a new hybrid algorithm,
AdaBoost+L1, that combines in a computationally effi-
cient fashion the virtues of AdaBoost with the sparsity pro-
duced by l1-regularization. We prove that AdaBoost+L1

is margin maximizing given standard assumptions of weak
learnability. We empirically investigate AdaBoost+L1 on
five datasets in Section 5.

2 PRELIMINARIES

For any integer k > 0, let Rk denote k-dimensional Eu-
clidean space and ∆k denote the probability simplex in Rk.
Let z = (z1, . . . , zk) denote the components of z ∈ Rk and
‖z‖1 =

∑k
i=1 |zi|.

Let S = 〈(x1, y1), . . . , (xm, ym)〉 be a sequence of m la-
belled training examples, where xi ∈ X is an instance and
yi ∈ {−1,+1} its label. A binary classifier on domain X
is a map h : X → {−1,+1}. The performance of the clas-
sifier h with respect to a distribution d ∈ ∆m on S can be
measured by its edge:

e(h,d) = Ei∼d [yih(xi)] =
m∑
i=1

diyih(xi). (1)

This value is contained in the interval [−1, 1] and is a mea-
sure of the correlation (under d) between the predictions
h(xi) and the labels yi. It is linearly related to the weighted
error by Pri∼d[yi 6= h(xi)] = (1− e(h,d))/2.

Let H = {h1, h2, . . . , hN} be a finite set of N weak clas-
sifiers. For example, the weak classifiers might be simple
decision stumps or decision trees of bounded size. For our
present purposes, we say that the training examples S are
weakly learnable under H if there exists θ > 0 such that
for any distribution d ∈ ∆m one can find hj ∈ H such that
e(hj ,d) ≥ θ. This is equivalent to there being a weak clas-
sifier that performs better than chance under distribution d.
Now for any distribution d, maxj e(hj ,d) is the best edge
over classifiers inH. So

θ∗ = min
d∈∆m

max
j
e(hj ,d) (2)

is the best edge over H under the least favorable distri-
bution on the examples, and weak learnability is simply
equivalent to θ∗ being strictly positive so that, for any
d ∈ ∆m, there exists hj with e(hj ,d) ≥ θ∗ > 0.

Now consider the composite classifier hα(x) =∑N
j=1 αjhj(x), where α ∈ RN . This gives the binary clas-

sification y = sign(hα(x)). Assume that hj ∈ H implies
−hj ∈ H. Then without loss of generality we can assume
that αj ≥ 0, j = 1, . . . , N . We say that hj is active with
respect to weight coefficients α if αj > 0.

The margin of hα on the i-th training example is

µi(α) = yihα(xi)/‖α‖1. (3)

Clearly, µi(α) ∈ [−1, 1]. µi(α) is a measure of the robust-
ness or confidence of the composite classifier’s decision on
the i-th instance. The margin of the classifier hα is the least
margin over all examples, µ(α) = mini=1...m µi(α).

A maximum-margin classifier results by selecting α to
maximize µ(α). Such a classifier has margin

µ∗ = max
α∈∆N

min
i

N∑
j=1

αjyihj(xi). (4)

As shown in (Freund & Schapire, 1996) and (Rätsch &
Warmuth, 2005), von Neumann’s min-max theorem ap-
plied to the m × N game matrix M(i, j) = yihj(xi),
yields:

µ∗ = max
α∈∆N

min
i=1,...,m

N∑
j=1

αjyihj(xi)

= min
d∈∆m

max
j=1,...,N

m∑
i=1

diyihj(xi) = θ∗

where the last equality follows from (1) and (2). Hence
θ∗ > 0 is the maximum achievable margin for any com-
posite classifier.

3 l1-REGULARIZED LOSS
MINIMIZATION

We now state the general l1 regularized loss minimiza-
tion problem and give conditions under which its solution
yields a maximum margin classifier as regularization is re-
laxed. Moreover, we give an explicit bound on the value of
the regularization parameter to yield a margin within pre-
scribed accuracy of θ∗.

Fix a loss function L : R → R. Common choices include
the exponential loss L(z) = e−z , used in AdaBoost, and
logistic loss L(z) = ln(1 + e−z). The l1-Regularized Loss
Minimization Problem (RLMP) with loss function L and
parameter r > 0 is:

min
α
L(α) =

m∑
i=1

L

yi N∑
j=1

αjhj(xi)


such that ‖α‖1 ≤ r, αj ≥ 0, j = 1, 2, . . . , N.



         617

Xi, Xiang, Ramadge, Schapire

For continuous L, RLMP has at least one solution. If L is
convex, then so is L and for any r > 0, RLMP will have
the same solution as a convex program of the form

min
m∑
i=1

L

yi N∑
j=1

αjhj(xi)

+ β‖α‖1

for some β > 0.

We first prove a fundamental property: at a solution of
RLMP, all active weak classifiers have identical edges.

Lemma 1 (Uniform Learning). Assume the training exam-
ples are weak learnable. Assume L is differentiable and
strictly monotone decreasing, i.e., L′(z) < 0 for all z ∈ R.
Then any solution α of RLMP satisfies

∑N
j=1 αj = r.

Moreover, if we select d ∈ ∆m such that

di =
L′(yi

∑N
j=1 αjhj(xi))∑m

i=1 L
′(yi

∑N
j=1 αjhj(xi))

, i = 1, . . . ,m, (5)

(as in AdaBoost), then the edges of all active weak classi-
fiers are equal and no smaller than θ∗.

Proof. Using (5) then (1)

∂L(α)
∂αk

=
m∑
i=1

yihk(xi)L′

yi N∑
j=1

αjhj(xi)

 (6)

= e(hk,d)
m∑
i=1

L′

yi N∑
j=1

αjhj(xi)

 . (7)

Under weak learnability, there exists hk ∈ H such that
e(hk,d) ≥ θ∗. Hence ∂L/∂αk is strictly negative. If∑N
j=1 αj < r, then the objective is decreased by increasing

αk; contradicting optimality.

Since α is a solution to RLMP, ∂L(α)/∂αj must be equal
for all αj > 0. Otherwise the objective can be further de-
creased by jittering the coefficients: increase those with
smaller derivative and decrease those with larger deriva-
tive by the same amount. From (7) we see that the partial
derivative with respect to αk is proportional to the edge
e(hk,d). So the edges of all active weak classifiers are
equal.

Alternatively, for convex problems this follows by the
KKT conditions. Let fi(α) = −αi, i = 1, . . . , N and
fN+1(α) =

∑N
j=1 αj−r. Then the problem can be written

as: minα L(α) subject to fi(α) ≤ 0, i = 1, 2, . . . , N + 1.
By the KKT conditions, the optimizer α satisfies∇L(α)+∑N+1
i=1 λi∇fi(α) = 0 with fi(α) = 0 or λi = 0,

i = 1, 2, . . . , N + 1. Obviously if αi > 0, λi = 0. So
for all αi > 0, ∂L

∂αi
= −λN+1, and by (7), the edges of all

active weak classifiers are equal.

Let the edge of all active weak classifiers be θ. Assume θ <
θ∗. By weak learnability, there exists hk ∈ H and αk = 0
such that e(hk,d) ≥ θ∗. Increasing αk and decreasing any
current active weak classifier by the same small amount
will reduce the objective function, contradicting optimality.

We now use Lemma 1 to significantly extend a result of
Rosset et al. (2004b) (for p = 1) by giving an explicit
bound on the value r in RLMP to yield a margin within
prescribed accuracy of θ∗.

Theorem 1. Assume L is convex, differentiable and
L′(z) < 0 for all z. Let α(r) be a solution of RLMP
with parameter r and hα(r) have margin µ(α(r)). Then
for small ε > 0

L′(rθ∗)
L′(r(θ∗ − ε))

<
ε

m(1− θ∗)
⇒ µ(α(r)) ≥ θ∗ − ε.

Thus, if ∀ε > 0, limz→∞ L′(z)/L′(z(1 − ε)) = 0, then
α(r) is margin maximizing in the limit, i.e., rk ↑ ∞ implies
limk→∞ µ(α(rk)) = θ∗.

Proof. Consider a solution α of RLMP for fixed r. By
Lemma 1, r =

∑
j αj . Let µi = µi(α) denote the margin

of the i-th example. Then the edges of the active classifiers
with respect to d, given by (5), satisfy:

θ∗ ≤ e(hj ,d)

=
m∑
i=1

yihj(xi)
L′(yi

∑N
j=1 αjhj(xi))∑m

k=1 L
′(yk

∑N
j=1 αjhj(xk))

=
m∑
i=1

yihj(xi)
L′(rµi)∑m
k=1 L

′(rµk)
.

Multiplying both sides by (αj/‖α‖1)
∑m
k=1 L

′(rµk),
summing over j, and combining terms yields

m∑
i=1

L′(rµi)(µi − θ∗) ≤ 0. (8)

Next, we split this sum into three sums over µi < θ∗ − ε,
θ∗ − ε ≤ µi < θ∗, and µi ≥ θ∗. This yields:

0 ≥
∑

i:µi<θ∗−ε

L′(rµi)(µi − θ∗)

+
∑

i:θ∗−ε≤µi<θ∗

L′(rµi)(µi − θ∗)

+
∑

i:µi≥θ∗
L′(rµi)(µi − θ∗)

≥ −K(ε)L′(r(θ∗ − ε))ε+ 0 +m(1− θ∗)L′(rθ∗).

The first sum uses the convexity of L with K(ε) defined to
be the number of examples for which µi < θ∗ − ε. The
second term is at least 0 because L′(x) < 0,∀x. The last
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term is at least m(1− θ∗)L′(rθ∗), using convexity and that
µi’s are bounded by 1. Thus,

K(ε) ≤ m(1− θ∗)L′(rθ∗)
εL′(r(θ∗ − ε))

. (9)

If L′(rθ∗)/L′(r(θ∗ − ε)) < ε/(m(1− θ∗)), then K(ε) <
1, so all example margins are at least (θ∗−ε). Finally, given
the additional assumption stated in the theorem, for any ε >
0, K(ε) → 0 as rk → ∞. Hence limk→∞ µ(α(rk)) =
θ∗.

Theorem 1 implies that loss functions with exponential de-
cay tails, such as exponential loss L(x) = e−x and logistic
loss L(x) = ln(1 + e−x), are margin maximizing. Polyno-
mial decay functions L(x) = x−k, k > 0 do not belong to
this category. Theorem 1 further provides an explicit rate
of convergence of the margin to θ∗. For instance, for ex-
ponential loss, it shows that if r > (1/ε) ln(m(1 − θ∗)/ε)
then µ(α(r)) ≥ θ∗ − ε.

Rosset et al. (2004b) define a non-increasing and non-
negative loss function L to be a margin maximizing loss
function if there exists R > 0 (possibly R = ∞) such that
for all ε > 0, limz↗R L(z(1− ε))/L(z) = ∞. For such
functions, they show the solution of RLMP maximizes the
margin as r → ∞. To see how this relates to our results,
we consider separately the two cases that R is finite or in-
finite. When R = ∞, it must be that limz→∞ L(z) = 0.
Using l’Hôpital’s rule yields limz→∞ L(z(1− ε))/L(z) =
limz→∞ L′(z(1− ε))/L′(z). The latter condition matches
the condition in Theorem 1. When R <∞, such as for the
hinge loss function, we do not need to let r → ∞, as sug-
gested in (Rosset et al., 2004b), to achieve the maximum
margin. Actually, as the following theorem shows, for loss
functions that decrease monotonically to a certain positive
point and remain constant afterwards, we can always find a
maximum margin classifier by solving RLMP with finite r.

Theorem 2. Assume L is continuous, strictly monotone
decreasing up to R > 0 and constant afterwards, i.e.,
L(z) = L(R),∀z ≥ R. Then a solution of RLMP with
r = R/θ∗ is margin maximizing.

Proof. There exists α∗ with ‖α∗‖1 = 1 such that hα∗

is margin maximizing. We first show that α = α∗R/θ∗

is a solution to RLMP, and then show that any non-
margin-maximizing composite classifier cannot be a so-
lution to RLMP. First, since α∗ is margin maximizing
yi
∑N
j=1 α∗jhj(xi) ≥ θ∗ for each i. Replacing α∗ with

α yields

yi

N∑
j=1

αjhj(xi) ≥ θ∗R/θ∗ = R , i = 1, . . . ,m.

Then for each i, L(yi
∑N
j=1 αjhj(xi)) = L(R). Thus

L(α) = mL(R) achieves the least possible value of

L. So α is a solution and mL(R) is the minimum
achievable loss. Assume ᾱ is a solution of RLMP with
r = R/θ∗ that achieves margin θ̄ < θ∗. Then for at
least one i, yi

∑N
j=1 ᾱjhj(xi)/

∑N
j=1 ᾱj = θ̄. Addition-

ally,
∑N
j=1 ᾱj ≤ r = R/θ∗. So for this i, we have

yi
∑N
j=1 ᾱjhj(xi) ≤ θ̄R/θ∗ < R, which makes L(ᾱ) >

mL(R), a contradiction of optimality.

An example is the hinge loss L(x) = max{0, (1 − x)}.
Theorem 2 says RLMP with hinge loss yields a margin
maximizing solution when r = 1/θ∗.

Finally, if we slightly strengthen the margin maximizing
loss function condition of Rosset et al. (2004b), we obtain
the following stronger result.

Theorem 3. Assume that L is monotone decreasing and
that for z ≥ 0 and ε ≥ 0, L((1 − ε)z)/L(z) ≥ f(εz)
where f is a strictly monotone increasing function. Then

θ∗ − µ(α(r)) ≤ f−1(m)
r

.

Proof. We note that L(α) =
∑m
i=1 L(yihα(xi)) =∑m

i=1 L(µi(α)‖α‖1). Hence by monotonicity of L

L(µ(α)‖α‖1) ≤ L(α) ≤ mL(µ(α)‖α‖1).

Let α∗ be margin maximizing with ‖α∗‖1 = r. Then by
optimality of α(r),

L(µ(α(r))r) ≤ L(α(r)) ≤ L(α∗) ≤ mL(θ∗r).

Hence L(µ(α(r))r)/L(θ∗r) ≤ m. Let z = θ∗r. We can
write

L(µ(α(r))r) = L(zµ(α(r))/θ∗) = L((1− εr)z)

with εr = 1 − µ(α(r))/θ∗. Since µ(α(r)) ≤ θ∗, εr ≥ 0.
So by the theorem’s assumption

f(εrz) ≤ L((1− εr)z)/L(z) ≤ m.

Inverting f yields εrz ≤ f−1(m) and substituting for εr
and z gives the result.

The exponential loss function satisfies the assumptions of
Theorem 3 with f(εz) = eεz . Hence for exponential loss,
θ∗ − µ(α(r)) ≤ ln(m)/r.

4 NEW ALGORITHM: ADABOOST+L1

Although conceptually simple, the direct solution of RLMP
and related approximate methods such as ε-boosting are
too slow to be practical for large weak classifier spaces.
To address this, we propose a new hybrid algorithm,
AdaBoost+L1 (see Figure 1), that efficiently penalizes the
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AdaBoost+L1

1. Initialize: select ν ∈ (0, 1], set r0 = 0, α0 = 0 ∈ RN ,
U0 = ∅, and d0(i) = 1

m , i = 1, . . . ,m.
For t = 1, 2, . . .
2. Find hk ∈ H such that e(hk,dt−1) ≥ θ∗.
3. Update U and r:
Ut = Ut−1 ∪ {k}, rt = rt−1 + ν

2 ln 1+e(hk,dt−1)
1−e(hk,dt−1) .

4. Solve the (small) convex minimization problem over
{αj}j∈Ut :

min
m∑
i=1

exp

−yi ∑
j∈Ut

αjhj(xi)


s.t.

∑
j∈Ut

αj ≤ rt, αj ≥ 0, ∀j ∈ Ut

5. Update the coefficients:

αt(j) =
{
αj if j ∈ Ut;
0 otherwise .

6. Update the distribution:

dt(i) =
exp(−yi

∑N
j=1 αt(j)hj(xi))∑m

i=1 exp(−yi
∑N

j=1 αt(j)hj(xi))
, i = 1, . . . ,m.

Figure 1: The AdaBoost+L1 algorithm.

l1 norm of the coefficients. The hybrid nature of the al-
gorithm is reminiscent of Grove and Schuurmans’ LP-
AdaBoost algorithm (1998). Steps 2 and 3 of each itera-
tion perform the first part of a standard AdaBoost update
with possibly non-optimal weak classifier selection (mean-
ing the selected weak classifier need not have maximum
edge, just not worse than θ∗). Before updating the coeffi-
cients, step 4 solves a small l1-regularized loss minimiza-
tion problem using only the coefficients in the set Ut. This
can be thought of as a balancing step that seeks to bring
the active classifiers into the uniform learning condition.
Finally, steps 5 and 6 update the coefficients and the distri-
bution. A key point is that the optimization problem in step
4 is convex and only involves a small number (� N ) of
the weak classifiers. The set Ut consists of the indices that
have been used at least once up to and including round t.
The parameter ν ∈ (0, 1] controls the speed of relaxation of
the regularization, and is essentially the same as Friedman’s
(2001) use of “shrinkage” with boosting. Smaller values of
ν impose more aggressive regularization and hence seek
sparser solutions.

The next theorem shows that AdaBoost+L1 yields a maxi-
mum margin solution as t→∞.

Theorem 4. Let αt be the solution of AdaBoost+L1 after
round t and set α̃t = αt/‖αt‖1. Then limt→∞ µ(αt) =
θ∗, and every limit point of α̃t is margin maximizing.

To prove the theorem, we first introduce a lemma. LetAt =

{j : αt(j) > 0}.
Lemma 2. The edges e(hj ,dt), j ∈ At, have a common
value θt. Moreover, lim inft→∞ θt ≥ θ∗.

Proof. By the proof of Lemma 1, the edges e(hj ,dt),
j ∈ At, have a common value θt. If θt < θ∗, then in
the next round k /∈ Ut with e(hk,dt) ≥ θ∗ is selected and
added to Ut+1. But {Ut} is a monotone increasing set se-
quence bounded above by a finite set. Hence it can only be
enlarged a finite number of times. So there exits t0 such
that θt ≥ θ∗, t ≥ t0. Hence lim inft→∞ θt ≥ θ∗.

Proof. (Of Theorem 4) In each round, rt increases by at
least 1

2ν ln((1 + θ∗)/(1 − θ∗)). So limt→∞ rt = ∞. By
Lemma 2 there exists t1 such that θt > 0 for t ≥ t1,
where θt is as above. Henceforth we restrict attention to
t ≥ t1. Then the edges with j ∈ At are positive, and by
(7), ‖αt‖1 = rt.

Let Kt(ε) denote the number of examples with margin be-
low (θt − ε) after round t. Following the steps in the proof
of Theorem 1 we obtain

0 ≤ Kt(ε) ≤
m(1− θt)L′(rtθt)
εL′(rt(θt − ε))

.

Now 1− θt is bounded, Kt(ε) is an integer and for L(z) =
e−z , limt→∞ L′(rtθt)/L′(rt(θt − ε)) = 0. Hence there
exists t(ε) ≥ t1 with Kt(ε) = 0 for t ≥ t(ε). Thus for t ≥
t(ε), θt− ε ≤ µ(αt) ≤ θ∗. Taking the lim inf of each term
and using Lemma 2 gives: θ∗− ε ≤ lim inft→∞(θt− ε) ≤
lim inft→∞ µ(αt) ≤ lim supt→∞ µ(αt) ≤ θ∗. Since
ε > 0 is arbitrary, limt→∞ µ(αt) = θ∗. Let subsequence
{α̃tk} converge to a limit point β of {α̃t = αt/‖αt‖1}.
Since µ is continuous in α, θ∗ = limk→∞ µ(αtk) =
limk→∞ µ(α̃tk) = µ(limk→∞ α̃tk) = µ(β).

We note that the Boost+L1 framework can be generalized
to other loss functions such as logistic loss, to achieve a
maximum margin solution in the limit as regularization is
relaxed.

5 EXPERIMENTS

We compared AdaBoost+L1 with AdaBoost on five
datasets: a synthetic dataset, Ringnorm, and four datasets
from the UCI online machine learning repository. Ring-
norm is a binary classification task between two 20-
dimensional Gaussian distributions: N(0, 4I) and N(µ, I)
(µ = (a, a, . . . , a), a = 1/

√
20). The three real datasets

are Diabetes (detecting diabetes based on medical informa-
tion), German (determining credit risk based on financial
histories), Spam (identifying spam email messages based
on word frequencies) and Ionosphere (classifying radar re-
turns from the ionosphere). In Ringnorm we randomly gen-
erated 100 examples for training and 5000 examples for
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testing; In Diabetes, we used 100 examples for training and
the other 668 for testing; In Spam, we used 100 for train-
ing and the other 4501 for testing; In German, we used 200
for training and the other 800 for testing; In Ionosphere, we
used 100 for training and the other 250 for testing. For each
dataset, we ran both algorithms until the error rates stopped
decreasing and overfitting occurs. We ran all the experi-
ments 20 times (using different samples of training/testing
examples) and averaged the results.

We used simple decision stumps as weak classifiers. This
illustrates the relative performance of the new algorithm.
Better performance may be achieved by more complex
weak classifiers such as decision trees.

Since each algorithm learns at a different rate, direct round-
by-round comparison of test performance or sparsity is not
a useful metric. Each algorithm will also begin overfitting
at different rounds, so comparing results at the final round
is also not appropriate. In applications one could use cross
validation to determine the stopping point for training that
yields the best α for each dataset. Hence it makes more
sense to compare the best test error of each algorithm over
all rounds and the associated sparsity of the classifier at this
“sweet spot”.

To this end, in Figure 2 we plot the test error and classi-
fier margin µ(α) (on training examples) as functions of the
number of classifiers chosen. The best error rates achieved
at the “sweet spots” and the associated number of base clas-
sifiers (average over 20 trials) are shown in Tables 1 and
Table 2.

AdaBoost AdaBoost+L1 Rel. Improvement

Ringnorm 25.5% 25.3% 0.8%
Diabetes 26.7% 26.6% 0.4%
German 26.9% 26.7% 0.8%
Spam 11.3% 11.3% 0.2%

Ionosphere 12.5% 12.6% -0.6%

Table 1: Comparison of error rates

AdaBoost AdaBoost+L1 Rel. Improvement

Ringnorm 121.8 55.0 54.8%
Diabetes 7.6 11.9 -56.6%
German 22.1 16.5 25.2%
Spam 31.3 26.5 15.3%

Ionosphere 26.7 19.6 26.8%

Table 2: Comparison of numbers of classifiers

As shown in the left column of Figure 2 and the tables,
AdaBoost+L1 achieves similar best error rates to Ada-
Boost. But in most cases, AdaBoost+L1 achieves its best
error rate with much fewer base classifiers (Table 2). The
only exception is the Diabetes dataset. However, it should
be noted that the actual numbers in this case are very small,
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(a) Ringnorm dataset
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(b) Diabetes dataset
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(c) German dataset
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(d) Spam dataset
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(e) Ionosphere dataset

Figure 2: Experiment results on five datasets. The left col-
umn shows the error rate on testing data, the right column
shows the minimal margin on training data.

so a small difference results in a large percentage change.
The right column of Figure 2 shows that with a fixed num-
ber of classifiers, AdaBoost+L1 achieves equal or slightly
better margins on the training examples.
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Figure 3: The frequencies of different features being selected, Spam Dataset

From Table 1 we can see that the improvement in error rate
is modest, or even too small to justify the extra complexity
of the algorithm. Therefore AdaBoost+L1 is unnecessary
if the only objective is low classification error. On the other
hand, as shown in Table 2, except for the Diabetes dataset,
AdaBoost + L1 reduces the number of active classifiers by
a considerable percentage. Therefore AdaBoost + L1 is
preferable in applications where a sparse set of features is
advantageous for other purposes.

In the Diabetes and German datasets, the error rate of
AdaBoost+L1 becomes higher than that of AdaBoost at the
end of the curve. As mentioned above, this does not mean
that AdaBoost+L1 has worse performance. In the German
dataset, for example, AdaBoost+L1 hits the overfitting wa-
tershed earlier than AdaBoost. With 20 classifiers, Ada-
Boost is still “fitting” the data, while AdaBoost+L1 is al-
ready overfitting after passing a sweet spot with better per-
formance.

AdaBoost+L1 takes more rounds to select the same num-
ber of classifiers since it repeatedly adjusts the weights of
selected classifiers and removes some previously selected
classifiers (by zeroing their coefficients). For example, in
the Ringnorm experiment, to generate around 120 active
classifiers (as shown on the graph), we ran AdaBoost+L1

for 1000 iterations, while AdaBoost reached this number of
active classifiers after 700 iterations. This accords with the
main goal of the algorithm: to select fewer active classi-
fiers over a given number of rounds while at the same time
achieving at least as good generalization performance. As
the results indicate, this is achieved in most cases.

The results suggest that AdaBoost+L1 chose more in-
formative classifiers/features. To better understand this,
we investigated the Spam experiments in greater detail.
For each of the 20 repetitions, we recorded whether a
single-feature classifier had been selected by AdaBoost
and AdaBoost+L1 at the 60th iteration. For each fea-
ture, we then plotted a histogram showing the selection
frequency under each algorithm (Figure 3). Both algo-
rithms select important features such as “free”, “$” and
“!”. However, AdaBoost tends to select presumably irrele-
vant words such as “you” (number 19 on the plot), “mail”

(10) and left parenthesis “(” (50) about 20% more often
than AdaBoost+L1. Other words such as “all” (3), “peo-
ple” (13) and “re” (45) are chosen by AdaBoost about 10%
more often. By avoiding these non-discriminative features,
AdaBoost+L1 is able to achieve roughly the same classifi-
cation accuracy using a smaller set of weak classifiers.

6 CONCLUSION

We have shown that l1-regularized boosting (RLMP), un-
der various conditions (Theorems 1, 2, 3), attains the max-
imum margin as regularization is relaxed. Moreover, we
obtained a quantitative relationship between the regular-
ization parameter r and the achievable margin. We pro-
vided similar convergence rate results for ε-AdaBoost and
gave a simple proof that it is also margin-maximizing as ε
vanishes. We observe that approximate uniform learning
is also enforced in other iterative margin maximizing al-
gorithms, such as TotalBoost (Warmuth et al., 2006) and
LPBoost (Grove & Schuurmans, 1998), under the name
“totally corrective learning.” The AdaBoost+L1 algorithm
provably achieves the maximum margin as t→∞ and has
been shown empirically to efficiently yield sparser solu-
tions than AdaBoost with roughly equal “sweet spot” gen-
eralization performance. This suggests it is doing better
feature selection. A more precise quantitative analysis of
the trade-off between sparsity, margin and generalization
merits further investigation.

APPENDIX: ε-ADABOOST

In this appendix, we give an analysis of ε-boosting (Hastie
et al., 2001). This method works much like AdaBoost
and related algorithms: a composite classifier hα is built
up over a sequence of rounds. In each round, a distribu-
tion d as in (5) is defined, and a weak classifier hj with
large edge e(hj ,d) selected. However, unlike AdaBoost,
ε-boosting increases αj by only some small ε > 0. Ros-
set et al. (2004a) show that ε-boosting approximates the
solution to the l1-regularized boosting problem, and for ε
small, maximizes the margin in the limit of convergence
(Zhang & Yu, 2005).
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ε-AdaBoost uses the exponential loss L(z) = exp(−z).
Below we provide an explicit bound for ε-AdaBoost on the
difference of the margin from θ∗ as a function of ε and
the number of rounds. Let αt denote the coefficient vector
after t rounds with α0 = 0.
Theorem 5. Fix 0 < ε < θ∗. After t rounds, the margin
µ(αt) of ε-AdaBoost satisfies

θ∗ − µ(αt) ≤ θ∗ −
ln(1 + ε(θ∗−ε)

1−θ∗ε )
ε

+
lnm
tε

' ε+
lnm
tε

for ε small .

To prove Theorem 5, we first introduce a lemma.
Lemma 3. For 0 < ε < 0.5,

L(αt) ≤
(

1− θ∗ε
1− ε2

)t
m. (10)

Proof. At round t, suppose the j-th weak classifier with
edge e(hj ,dt) ≥ θ∗ is selected. Then according to the
algorithm, αt = αt−1 + εej , where ej is the j-th natural
basis vector. Using Taylor Series Expansion (about ε = 0),
we obtain L(αt−1 + εej) =

∑∞
k=0

C(k)
k! ε

k, where

C(k) =
dkL(αt−1 + εej)

dεk

∣∣∣∣
ε=0

=
m∑
i=1

(−yihj(xi))k exp(−yihαt−1(xi))

=
{
C(1) k odd
L(αt−1) k even.

Similar to (7), we have C(1) = −e(hj ,dt)L(αt−1) ≤
−θ∗L(αt−1). Therefore,

L(αt) = L(αt−1 + εej)

≤ L(αt−1)
(

1− θ∗ε+
ε2

2!
− θ∗ε3

3!
+ · · ·

)
≤ L(αt−1)(1− θ∗ε+ ε2 − θ∗ε3 + · · · )

= L(αt−1)
(

1− θ∗ε
1− ε2

)
.

In the third line, we used the fact that ε ≤ 0.5. Repeating
the argument for each round t and noting that L(α0) = m
gives (10).

Proof. (Of Theorem 5) At round t, let the mar-
gin on the i-th example be µi = µi(αt) =
yihαt

(xi)/‖αt‖1. Now ‖αt‖1 = tε, because every co-
efficient is monotone non-decreasing. Hence L(αt) =∑m
i=1 exp(−yihαt(xi)) =

∑m
i=1 exp(−‖αt‖1µi) =∑m

i=1 exp(−tεµi) ≥ exp(−tεmini µi). Using µ(αt) =
mini µi, and combining this inequality with Lemma 3

yields exp(−tεµ(αt)) ≤
(

1−θ∗ε
1−ε2

)t
m. Taking logs and

rearranging gives (10).
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