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Example: Ad/Content PlacementExample: Ad/Content PlacementExample: Ad/Content PlacementExample: Ad/Content PlacementExample: Ad/Content Placement

• repeat:
1. website visited by user (with profile, browsing history,

etc.)
2. website chooses ad/content to present to user
3. user responds (clicks, leaves page, etc.)

• goal: make choices that elicit desired user behavior



Example: Medical TreatmentExample: Medical TreatmentExample: Medical TreatmentExample: Medical TreatmentExample: Medical Treatment

• repeat:
1. doctor visited by patient (with symptoms, test results,

etc.)
2. doctor chooses treatment
3. patient responds (recovers, gets worse, etc.)

• goal: make choices that maximize favorable outcomes



The Contextual Bandits ProblemThe Contextual Bandits ProblemThe Contextual Bandits ProblemThe Contextual Bandits ProblemThe Contextual Bandits Problem

• repeat:
1. learner presented with context
2. learner chooses an action
3. learner observes reward (but only for chosen action)

• goal: learn to choose actions to maximize rewards

• general and fundamental problem: how to learn to make
intelligent decisions through experience



IssuesIssuesIssuesIssuesIssues

• classic dilemma:
• exploit what has already been learned
• explore to learn which behaviors give best results

• in addition, must use context effectively
• many choices of behavior possible
• may never see same context twice — need to generalize

• selection bias: if explore while exploiting, will tend to get
highly skewed data

• efficiency



This TalkThis TalkThis TalkThis TalkThis Talk

• overview of some of the algorithms and techniques used for
contextual bandits (and variants)

• want algorithms that:
• are general-purpose and practical — fast and simple to

implement
• can learn complex behaviors based on context
• have provably strong statistical guarantees
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Formal ModelFormal ModelFormal ModelFormal ModelFormal Model

• repeat, for t = 1, . . . ,T :

1a. learner observes context xt
1b. reward vector rt ∈ [0, 1]K chosen (but not observed)

2. learner selects action at ∈ {1, . . . ,K}
3. learner receives observed reward rt(at)

• goal: maximize total reward:

T∑
t=1

rt(at)

• for now: assume pairs (xt , rt) chosen at random i.i.d.



ExampleExampleExampleExampleExample

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 0.0

(Female, 18, . . .) 1.0 0.0 1.0

(Female, 48, . . .) 0.5 0.1 0.7
...

...

total reward = 0.2 + 1.0 + 0.1 + · · ·



PoliciesPoliciesPoliciesPoliciesPolicies

• aim: learn to choose actions based on context

• want good policy: rule for selecting action from context

• e.g.:

If (sex = male) choose action 2
Else if (age > 45) choose action 1

else choose action 3

• policy π : (context x) 7→ (action a)

• before learning, must choose general form of policies to be
used
⇒ defines policy space Π

• e.g.: all decision trees (nested “if-then-else” rules)
• tacit assumption:
∃ (unknown) policy π ∈ Π that gives high rewards



Learning with Context and PoliciesLearning with Context and PoliciesLearning with Context and PoliciesLearning with Context and PoliciesLearning with Context and Policies

• goal: learn through experimentation to do (almost) as well as
best π ∈ Π

• assume Π finite, but typically extremely large

• policies may be very complex and expressive
⇒ powerful approach

• challenges:

• Π extremely large
• need to be learning about all policies simultaneously

while also performing as well as the best
• when action selected, only observe reward for policies

that would have chosen same action
• exploration versus exploitation on a gigantic scale!



Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)Formal Model (revisited)

• repeat, for t = 1, . . . ,T :

1a. learner observes context xt
1b. reward vector rt ∈ [0, 1]K chosen (but not observed)

2. learner selects action at ∈ {1, . . . ,K}
3. learner receives observed reward rt(at)

• goal: want high total (or average) reward
relative to best policy π ∈ Π

• i.e., want small regret:

max
π∈Π

1

T

T∑
t=1

rt(π(xt))︸ ︷︷ ︸
best policy’s average reward

− 1

T

T∑
t=1

rt(at)︸ ︷︷ ︸
learner’s average reward

• “no regret” if regret→ 0 as T →∞
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Starting Point: Full-Information SettingStarting Point: Full-Information SettingStarting Point: Full-Information SettingStarting Point: Full-Information SettingStarting Point: Full-Information Setting

• full-information setting: same as bandit, but learner can see
rewards for all actions

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 ©0.0

(Female, 18, . . .) 1.0 0.0 ©1.0

(Female, 48, . . .) ©0.5 0.1 0.7
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·
π’s total reward = 0.0 + 1.0 + 0.5 + · · ·

• for any π, can compute rewards would have received
• average is good estimate of π’s expected reward



Follow-the-Leader AlgorithmFollow-the-Leader AlgorithmFollow-the-Leader AlgorithmFollow-the-Leader AlgorithmFollow-the-Leader Algorithm

• at round t:
• find empirically best π ∈ Π ← main challenge
• use to choose action: at = π(xt)

• optimal regret: O

(√
ln |Π|
T

)
• to apply, need “oracle” (algorithm/subroutine) for finding best
π ∈ Π on observed contexts and rewards

• “arg-max oracle” (aka: ERM oracle, classification oracle,
linear oracle, ...)

• same as standard classification learning

• so: if have “good” classification algorithm for Π, can use to
find good policy
technique: estimate expected reward of each policy

technique: use existing method (“oracle”) to find best policy



Proof IdeasProof IdeasProof IdeasProof IdeasProof Ideas

• show every policy’s empirical average reward close to expected
reward

• implies empirically best policy has reward close to truly best
policy ⇒ regret bound



Non-Stochastic (Adversarial) SettingNon-Stochastic (Adversarial) SettingNon-Stochastic (Adversarial) SettingNon-Stochastic (Adversarial) SettingNon-Stochastic (Adversarial) Setting

• so far, assumed stochastic setting: each (xt , rt) i.i.d.

• not always realistic, e.g.:
• temporally correlated or drifting data
• truly adversarial environment (as in game playing)

• non-stochastic (adversarial) setting:
• contexts xt and rewards rt are arbitrary

• not assumed random
• possibly selected by adversary

• follow-the-leader does not work here
• adversary can force very low reward while ensuring one

policy gets fairly high reward



Hedge AlgorithmHedge AlgorithmHedge AlgorithmHedge AlgorithmHedge Algorithm
[Littlestone & Warmuth][Freund & Schapire]

• maintain one weight for every π ∈ Π

• on each round t:
• choose random policy π with probability proportional to

weights
• use action chosen by π
• increase weight of each policy according to reward it

would have received

• yields optimal regret, even in adversarial setting

• but: time/space are linear in |Π|
• too slow if |Π| gigantic

• applications:
• game-playing: can use to play/solve games
• boosting: AdaBoost derived from Hedge

technique: use weighted combination of policies



Proof IdeasProof IdeasProof IdeasProof IdeasProof Ideas

• keep track of sum of weights of all policies
• upper bound in terms of reward of algorithm
• lower bound in terms of reward of best policy

• combine to get regret bound



Follow-the-Leader versus HedgeFollow-the-Leader versus HedgeFollow-the-Leader versus HedgeFollow-the-Leader versus HedgeFollow-the-Leader versus Hedge

• follow-the-leader:
• stochastic setting only
• optimal regret
• efficient, given access to oracle

• Hedge:
• non-stochastic setting
• optimal regret
• inefficient if |Π| huge

• is best of both possible?
• i.e., no-regret, oracle-efficient algorithm for

non-stochastic setting?
• appears impossible [Hazan & Koren]
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Back to Bandit SettingBack to Bandit SettingBack to Bandit SettingBack to Bandit SettingBack to Bandit Setting
• only see rewards for actions taken

Actions
Context 1 2 3

(Male, 50, . . .) 1.0 0.2 ©0.0

(Female, 18, . . .) 1.0 0.0 ©1.0

(Female, 48, . . .) ©0.5 0.1 0.7
...

...

0 = learner’s action

© = π’s action

learner’s total reward = 0.2 + 1.0 + 0.1 + · · ·
π’s total reward = 0.0?? + 1.0 + 0.5?? + · · ·

• for any policy π, only observe π’s rewards on subset of rounds
• might like to use oracle to find empirically good policy
• problems:

• only see some rewards
• observed rewards highly biased

(due to skewed choice of actions)



Exploration is NecessaryExploration is NecessaryExploration is NecessaryExploration is NecessaryExploration is Necessary

• e.g.:
• drug A is “pretty good” (cure rate = 60%)
• drug B is “much better” (cure rate = 80%)

• in early trials, by chance, A might appear better than B

⇒ follow-the-leader can “get stuck” only picking A

• need exploration!

• problem even more extreme with more complex policies



ε-Greedy/Epoch-Greedy Algorithmε-Greedy/Epoch-Greedy Algorithmε-Greedy/Epoch-Greedy Algorithmε-Greedy/Epoch-Greedy Algorithmε-Greedy/Epoch-Greedy Algorithm
[Langford & Zhang]

• modified follow-the-leader for bandit stochastic setting
• explicit exploitation and exploration

• on each round, choose action:
• according to “best” policy so far (with probability 1− ε)

[can find with oracle]
• uniformly at random (with probability ε)

• simple and fast (given oracle)

• not optimal regret: O

((
K ln |Π|

T

)1/3
)

• analysis: similar to follow-the-leader
technique: explicit exploration via uniform sampling of actions



De-biasing Biased EstimatesDe-biasing Biased EstimatesDe-biasing Biased EstimatesDe-biasing Biased EstimatesDe-biasing Biased Estimates

• selection bias is major problem

• simple (and old) trick: inverse-propensity weighting
• say want to estimate E[X ]

(e.g.: probability unfair coin comes up heads)
• with probability p: observe X once

with probability 1− p: don’t observe X at all!
• trick: define

X̂ =

{
X/p if observed

0 else

• then E[X̂ ] = E[X ] — unbiased!

• can use to get unbiased estimates for rewards of all actions
(not just observed)



Variance ControlVariance ControlVariance ControlVariance ControlVariance Control

• estimates are unbiased — done?

• no! — variance may be extremely large

∴ to get good estimators, must control variance

• sometimes can do with uniform sampling of actions
• sometimes need more sophisticated approach

technique: inverse-propensity weighting to get unbiased estimates



Bandits in Non-Stochastic SettingBandits in Non-Stochastic SettingBandits in Non-Stochastic SettingBandits in Non-Stochastic SettingBandits in Non-Stochastic Setting
[Auer, Cesa-Bianchi, Freund & Schapire]

• Exp4: contextual-bandits algorithm for non-stochastic setting

• combines:
• Hedge
• uniform sampling of actions
• inverse-propensity weighting

• optimal regret: O

(√
K ln |Π|

T

)
• analysis: similar to Hedge, but also must account for variance

• but like Hedge: time/space are linear in |Π|



Epoch-Greedy versus Exp4Epoch-Greedy versus Exp4Epoch-Greedy versus Exp4Epoch-Greedy versus Exp4Epoch-Greedy versus Exp4

• epoch-greedy:
• stochastic setting
• not optimal regret: O

(
T−1/3

)
• efficient, given access to oracle

• Exp4:
• non-stochastic setting
• optimal regret: O

(
T−1/2

)
• inefficient if |Π| huge

• difference in regret is big!
• to get regret ε, need O

(
1/ε3

)
versus O

(
1/ε2

)
trials

• best of both?
• in stochastic setting, is there an algorithm that is fast

(given oracle) and has near optimal regret?
yes!



“Mini-Monster” Algorithm (aka: ILOVETOCONBANDITS)“Mini-Monster” Algorithm (aka: ILOVETOCONBANDITS)“Mini-Monster” Algorithm (aka: ILOVETOCONBANDITS)“Mini-Monster” Algorithm (aka: ILOVETOCONBANDITS)“Mini-Monster” Algorithm (aka: ILOVETOCONBANDITS)
[Agarwal, Hsu, Kale, Langford, Li & Schapire]

• apply all preceding techniques

• every round, find weighted combination of policies satisfying
explicitly stated properties:

1. low (estimated) regret [exploit]
i.e., choose actions think will give high reward

2. low (estimated) variance [explore]
i.e., ensure future estimates will be accurate

• can formulate as very large and complex optimization problem

• solve using simple and efficient algorithm, using oracle
• find violated contraint and fix it — repeat until done



Mini-Monster (cont.)Mini-Monster (cont.)Mini-Monster (cont.)Mini-Monster (cont.)Mini-Monster (cont.)

• regret (nearly) optimal:

Õ

(√
K ln |Π|

T

)

• fast! only requires an average of

Õ

(√
K

T ln |Π|

)
� 1

oracle calls per round

• same approach as RandomizedUCB (aka “Monster”)
but simpler and much faster
[Dud́ık, Hsu, Kale, Karampatziakis, Langford, Reyzin & Zhang]

technique: formulate properties as optimization problem and solve



Proof IdeasProof IdeasProof IdeasProof IdeasProof Ideas

• regret bound:
• regret constraint ensures low regret

(if estimates are good enough)
• variance constraint ensures that they actually will be

good enough

• efficiency of numerical algorithm:
• use potential function to measure progress
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Application: Multiworld Testing Decision ServiceApplication: Multiworld Testing Decision ServiceApplication: Multiworld Testing Decision ServiceApplication: Multiworld Testing Decision ServiceApplication: Multiworld Testing Decision Service
[Agarwal, Bird, Cozowicz, Hoang, Langford, Lee, Li, Melamed, Oshri, Ribas, Sen, Slivkins]

• unified system for solving contextual-bandit problems
• general-purpose
• modular
• easy to interface with existing systems
• designed to reduce common errors

• e.g.: deployed to select news articles on MSN homepage
• no previous learning method had been successful
• 25% relative lift in click-through rate
• used now in production (thousands of requests per

second)



A Next Step: Contextual Bandits with Underlying StateA Next Step: Contextual Bandits with Underlying StateA Next Step: Contextual Bandits with Underlying StateA Next Step: Contextual Bandits with Underlying StateA Next Step: Contextual Bandits with Underlying State
[Jiang, Krishnamurthy, Agarwal, Langford & Schapire]

• decisions made now can significantly impact the future
• may be underlying state affected by actions

• e.g., medical treatment:
• see same patient repeatedly
• state: underlying condition or disease, stage of

progression, etc.

• affected by chosen treatment

• still want to find best policy
• much harder since choices have impact well into future
• every policy can define very different sequence of actions

• new exploration algorithm for finding “best” policy
• assumes feasibility of “value-function approximation”
• polynomial in new measure of tractability

called Bellman rank
• but: not computationally efficient — more to do!



ConclusionsConclusionsConclusionsConclusionsConclusions

• contextual bandits is a challenging problem, especially if want
• computational efficiency
• very large policy space (for highly complex behaviors)
• optimal statistical performance (regret)
• adversarial setting

• building up effective methods for meeting these challenges

• theory is indispensible guide, paying off in practice
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