# Theory and Applications of Boosting 

Rob Schapire

Princeton University

## Example: "How May I Help You?"

[Gorin et al.]

- goal: automatically categorize type of call requested by phone customer (Collect, CallingCard, PersonToPerson, etc.)
- yes I'd like to place a collect call long distance please (Collect)
- operator I need to make a call but I need to bill it to my office (ThirdNumber)
- yes I'd like to place a call on my master card please (CallingCard)
- I just called a number in sioux city and I musta rang the wrong number because $I$ got the wrong party and I would like to have that taken off of my bill (BillingCredit)


## Example: "How May I Help You?"

[Gorin et al.]

- goal: automatically categorize type of call requested by phone customer (Collect, CallingCard, PersonToPerson, etc.)
- yes I'd like to place a collect call long distance please (Collect)
- operator I need to make a call but I need to bill it to my office (ThirdNumber)
- yes I'd like to place a call on my master card please (CallingCard)
- I just called a number in sioux city and I musta rang the wrong number because $I$ got the wrong party and I would like to have that taken off of my bill (BillingCredit)
- observation:
- easy to find "rules of thumb" that are "often" correct e.g.: "IF 'card' occurs in utterance
THEN predict 'CallingCard' "
- hard to find single highly accurate prediction rule


## The Boosting Approach

- devise computer program for deriving rough rules of thumb
- apply procedure to subset of examples
- obtain rule of thumb
- apply to 2 nd subset of examples
- obtain 2nd rule of thumb
- repeat $T$ times


## Details

- how to choose examples on each round?
- concentrate on "hardest" examples (those most often misclassified by previous rules of thumb)
- how to combine rules of thumb into single prediction rule?
- take (weighted) majority vote of rules of thumb


## Boosting

- boosting $=$ general method of converting rough rules of thumb into highly accurate prediction rule
- technically:
- assume given "weak" learning algorithm that can consistently find classifiers ("rules of thumb") at least slightly better than random, say, accuracy $\geq 55 \%$ (in two-class setting)
- given sufficient data, a boosting algorithm can provably construct single classifier with very high accuracy, say, 99\%


## Outline of Tutorial

- brief background
- basic algorithm and core theory
- other ways of understanding boosting
- experiments, applications and extensions


## Brief Background

## Strong and Weak Learnability

- boosting's roots are in "PAC" (Valiant) learning model
- get random examples from unknown, arbitrary distribution
- strong PAC learning algorithm:
- for any distribution with high probability given polynomially many examples (and polynomial time) can find classifier with arbitrarily small generalization error
- weak PAC learning algorithm
- same, but generalization error only needs to be slightly better than random guessing $\left(\frac{1}{2}-\gamma\right)$
- [Kearns \& Valiant '88]:
- does weak learnability imply strong learnability?


## Early Boosting Algorithms

- [Schapire '89]:
- first provable boosting algorithm
- [Freund '90]:
- "optimal" algorithm that "boosts by majority"
- [Drucker, Schapire \& Simard '92]:
- first experiments using boosting
- limited by practical drawbacks


## AdaBoost

- [Freund \& Schapire '95]:
- introduced "AdaBoost" algorithm
- strong practical advantages over previous boosting algorithms
- experiments and applications using AdaBoost:
[Drucker \& Cortes '96]
[Jackson \& Craven '96]
[Freund \& Schapire '96]
[Quinlan '96]
[Breiman '96]
[Maclin \& Opitz '97]
[Bauer \& Kohavi '97]
[Schwenk \& Bengio '98]
[Schapire, Singer \& Singhal '98]
[Abney, Schapire \& Singer '99]
[Haruno, Shirai \& Ooyama '99]
[Cohen \& Singer' 99]
[Dietterich '00]
[Schapire \& Singer '00]
[Collins '00]
[Escudero, Màrquez \& Rigau '00]
[lyer, Lewis, Schapire et al. '00]
[Onoda, Rätsch \& Müller '00]
[Tieu \& Viola '00]
[Walker, Rambow \& Rogati '01]
[Rochery, Schapire, Rahim \& Gupta '01]
[Merler, Furlanello, Larcher \& Sboner '01]
[Di Fabbrizio, Dutton, Gupta et al. '02]
[Qu, Adam, Yasui et al. '02]
[Tur, Schapire \& Hakkani-Tür '03]
[Viola \& Jones '04]
[Middendorf, Kundaje, Wiggins et al. '04]
- continuing development of theory and algorithms:
[Breiman '98, '99]
[Schapire, Freund, Bartlett \& Lee '98]
[Grove \& Schuurmans '98]
[Mason, Bartlett \& Baxter '98]
[Schapire \& Singer '99]
[Cohen \& Singer '99]
[Freund \& Mason '99]
[Domingo \& Watanabe '99]
[Mason, Baxter, Bartlett \& Frean '99]
[Duffy \& Helmbold '99, '02]
[Freund \& Mason '99]
[Ridgeway, Madigan \& Richardson '99] [Kivinen \& Warmuth '99]
[Friedman, Hastie \& Tibshirani '00]
[Rätsch, Onoda \& Müller '00]
[Rätsch, Warmuth, Mika et al. '00]
[Allwein, Schapire \& Singer '00]
[Friedman '01]
[Koltchinskii, Panchenko \& Lozano '01]
[Collins, Schapire \& Singer '02]
[Demiriz, Bennett \& Shawe-Taylor '02]
[Lebanon \& Lafferty '02]
[Wyner '02]
[Rudin, Daubechies \& Schapire '03]
[Jiang '04]
[Lugosi \& Vayatis '04]
[Zhang '04]


## Basic Algorithm and Core Theory

- introduction to AdaBoost
- analysis of training error
- analysis of test error based on margins theory


## A Formal Description of Boosting

- given training set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$
- $y_{i} \in\{-1,+1\}$ correct label of instance $x_{i} \in X$


## A Formal Description of Boosting

- given training set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$
- $y_{i} \in\{-1,+1\}$ correct label of instance $x_{i} \in X$
- for $t=1, \ldots, T$ :
- construct distribution $D_{t}$ on $\{1, \ldots, m\}$
- find weak classifier ("rule of thumb")

$$
h_{t}: X \rightarrow\{-1,+1\}
$$

with small error $\epsilon_{t}$ on $D_{t}$ :

$$
\epsilon_{t}=\operatorname{Pr}_{i \sim D_{t}}\left[h_{t}\left(x_{i}\right) \neq y_{i}\right]
$$

## A Formal Description of Boosting

- given training set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$
- $y_{i} \in\{-1,+1\}$ correct label of instance $x_{i} \in X$
- for $t=1, \ldots, T$ :
- construct distribution $D_{t}$ on $\{1, \ldots, m\}$
- find weak classifier ("rule of thumb")

$$
h_{t}: X \rightarrow\{-1,+1\}
$$

with small error $\epsilon_{t}$ on $D_{t}$ :

$$
\epsilon_{t}=\operatorname{Pr}_{i \sim D_{t}}\left[h_{t}\left(x_{i}\right) \neq y_{i}\right]
$$

- output final classifier $H_{\text {final }}$


## AdaBoost

[with Freund]

- constructing $D_{t}$ :
- $D_{1}(i)=1 / m$


## AdaBoost

[with Freund]

- constructing $D_{t}$ :
- $D_{1}(i)=1 / m$
- given $D_{t}$ and $h_{t}$ :

$$
\begin{aligned}
D_{t+1}(i) & =\frac{D_{t}(i)}{Z_{t}} \times \begin{cases}e^{-\alpha_{t}} & \text { if } y_{i}=h_{t}\left(x_{i}\right) \\
e^{\alpha_{t}} & \text { if } y_{i} \neq h_{t}\left(x_{i}\right)\end{cases} \\
& =\frac{D_{t}(i)}{Z_{t}} \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)
\end{aligned}
$$

where $Z_{t}=$ normalization constant

$$
\alpha_{t}=\frac{1}{2} \ln \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)>0
$$

## AdaBoost

[with Freund]

- constructing $D_{t}$ :
- $D_{1}(i)=1 / m$
- given $D_{t}$ and $h_{t}$ :

$$
\begin{aligned}
D_{t+1}(i) & =\frac{D_{t}(i)}{Z_{t}} \times \begin{cases}e^{-\alpha_{t}} & \text { if } y_{i}=h_{t}\left(x_{i}\right) \\
e^{\alpha_{t}} & \text { if } y_{i} \neq h_{t}\left(x_{i}\right)\end{cases} \\
& =\frac{D_{t}(i)}{Z_{t}} \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)
\end{aligned}
$$

where $Z_{t}=$ normalization constant

$$
\alpha_{t}=\frac{1}{2} \ln \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)>0
$$

- final classifier:
- $H_{\text {final }}(x)=\operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$


## Toy Example


weak classifiers $=$ vertical or horizontal half-planes

## Round 1



## Round 2



$$
\begin{aligned}
& \varepsilon_{2}=0.21 \\
& \alpha_{2}=0.65
\end{aligned}
$$



## Round 3



## Final Classifier



## Analyzing the training error

- Theorem:
- write $\epsilon_{t}$ as $1 / 2-\gamma_{t}$


## Analyzing the training error

- Theorem:
- write $\epsilon_{t}$ as $1 / 2-\gamma_{t}$
- then

$$
\begin{aligned}
\text { training } \operatorname{error}\left(H_{\text {final }}\right) & \leq \prod_{t}\left[2 \sqrt{\epsilon_{t}\left(1-\epsilon_{t}\right)}\right] \\
& =\prod_{t} \sqrt{1-4 \gamma_{t}^{2}} \\
& \leq \exp \left(-2 \sum_{t} \gamma_{t}^{2}\right)
\end{aligned}
$$

## Analyzing the training error

- Theorem:
- write $\epsilon_{t}$ as $1 / 2-\gamma_{t}$
- then

$$
\begin{aligned}
\operatorname{training} \operatorname{error}\left(H_{\text {final }}\right) & \leq \prod_{t}\left[2 \sqrt{\epsilon_{t}\left(1-\epsilon_{t}\right)}\right] \\
& =\prod_{t} \sqrt{1-4 \gamma_{t}^{2}} \\
& \leq \exp \left(-2 \sum_{t} \gamma_{t}^{2}\right)
\end{aligned}
$$

- so: if $\forall t: \gamma_{t} \geq \gamma>0$
then training error $\left(H_{\text {final }}\right) \leq e^{-2 \gamma^{2} T}$
- AdaBoost is adaptive:
- does not need to know $\gamma$ or $T$ a priori
- can exploit $\gamma_{t} \gg \gamma$
- let $f(x)=\sum_{t} \alpha_{t} h_{t}(x) \Rightarrow H_{\text {final }}(x)=\operatorname{sign}(f(x))$
- Step 1: unwrapping recurrence:

$$
\begin{aligned}
D_{\text {final }}(i) & =\frac{1}{m} \frac{\exp \left(-y_{i} \sum_{t} \alpha_{t} h_{t}\left(x_{i}\right)\right)}{\prod_{t} Z_{t}} \\
& =\frac{1}{m} \frac{\exp \left(-y_{i} f\left(x_{i}\right)\right)}{\prod_{t} Z_{t}}
\end{aligned}
$$

Proof (cont.)

- Step 2: training error $\left(H_{\text {final }}\right) \leq \prod_{t} Z_{t}$


## Proof (cont.)

- Step 2: training $\operatorname{error}\left(H_{\text {final }}\right) \leq \prod_{t} Z_{t}$
- Proof:

$$
\text { training } \operatorname{error}\left(H_{\text {final }}\right)=\frac{1}{m} \sum_{i} \begin{cases}1 & \text { if } y_{i} \neq H_{\text {final }}\left(x_{i}\right) \\ 0 & \text { else }\end{cases}
$$

## Proof (cont.)

- Step 2: training $\operatorname{error}\left(H_{\text {final }}\right) \leq \prod_{t} Z_{t}$
- Proof:

$$
\begin{aligned}
\operatorname{training} \operatorname{error}\left(H_{\text {final }}\right) & =\frac{1}{m} \sum_{i} \begin{cases}1 & \text { if } y_{i} \neq H_{\text {final }}\left(x_{i}\right) \\
0 & \text { else }\end{cases} \\
& =\frac{1}{m} \sum_{i} \begin{cases}1 & \text { if } y_{i} f\left(x_{i}\right) \leq 0 \\
0 & \text { else }\end{cases}
\end{aligned}
$$

## Proof (cont.)

- Step 2: training $\operatorname{error}\left(H_{\text {final }}\right) \leq \prod_{t} Z_{t}$
- Proof:

$$
\begin{aligned}
\text { training error }\left(H_{\text {final }}\right) & =\frac{1}{m} \sum_{i} \begin{cases}1 & \text { if } y_{i} \neq H_{\text {final }}\left(x_{i}\right) \\
0 & \text { else }\end{cases} \\
& =\frac{1}{m} \sum_{i} \begin{cases}1 & \text { if } y_{i} f\left(x_{i}\right) \leq 0 \\
0 & \text { else }\end{cases} \\
& \leq \frac{1}{m} \sum_{i} \exp \left(-y_{i} f\left(x_{i}\right)\right)
\end{aligned}
$$

## Proof (cont.)

- Step 2: training $\operatorname{error}\left(H_{\text {final }}\right) \leq \prod_{t} Z_{t}$
- Proof:

$$
\begin{aligned}
\operatorname{training} \operatorname{error}\left(H_{\text {final }}\right) & =\frac{1}{m} \sum_{i} \begin{cases}1 & \text { if } y_{i} \neq H_{\text {final }}\left(x_{i}\right) \\
0 & \text { else }\end{cases} \\
& =\frac{1}{m} \sum_{i} \begin{cases}1 & \text { if } y_{i} f\left(x_{i}\right) \leq 0 \\
0 & \text { else }\end{cases} \\
& \leq \frac{1}{m} \sum_{i} \exp \left(-y_{i} f\left(x_{i}\right)\right) \\
& =\sum_{i} D_{\text {final }}(i) \prod_{t} Z_{t}
\end{aligned}
$$

## Proof (cont.)

- Step 2: training $\operatorname{error}\left(H_{\text {final }}\right) \leq \prod_{t} Z_{t}$
- Proof:

$$
\begin{aligned}
\text { training error }\left(H_{\text {final }}\right) & =\frac{1}{m} \sum_{i} \begin{cases}1 & \text { if } y_{i} \neq H_{\text {final }}\left(x_{i}\right) \\
0 & \text { else }\end{cases} \\
& =\frac{1}{m} \sum_{i} \begin{cases}1 & \text { if } y_{i} f\left(x_{i}\right) \leq 0 \\
0 & \text { else }\end{cases} \\
& \leq \frac{1}{m} \sum_{i} \exp \left(-y_{i} f\left(x_{i}\right)\right) \\
& =\sum_{i} D_{\text {final }}(i) \prod_{t} Z_{t} \\
& =\prod_{t} Z_{t}
\end{aligned}
$$

Proof (cont.)

- Step 3: $Z_{t}=2 \sqrt{\epsilon_{t}\left(1-\epsilon_{t}\right)}$


## Proof (cont.)

- Step 3: $Z_{t}=2 \sqrt{\epsilon_{t}\left(1-\epsilon_{t}\right)}$
- Proof:

$$
\begin{aligned}
Z_{t} & =\sum_{i} D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right) \\
& =\sum_{i: y_{i} \neq h_{t}\left(x_{i}\right)} D_{t}(i) e^{\alpha_{t}}+\sum_{i: y_{i}=h_{t}\left(x_{i}\right)} D_{t}(i) e^{-\alpha_{t}} \\
& =\epsilon_{t} e^{\alpha_{t}}+\left(1-\epsilon_{t}\right) e^{-\alpha_{t}} \\
& =2 \sqrt{\epsilon_{t}\left(1-\epsilon_{t}\right)}
\end{aligned}
$$

## How Will Test Error Behave? (A First Guess).


expect:

- training error to continue to drop (or reach zero)
- test error to increase when $H_{\text {final }}$ becomes "too complex"
- "Occam's razor"
- overfitting
- hard to know when to stop training


## Actual Typical Run



- test error does not increase, even after 1000 rounds
- (total size $>2,000,000$ nodes)
- test error continues to drop even after training error is zero!

| $\#$ rounds |  |  |  |
| :---: | :---: | ---: | ---: |
|  | 5 | 100 | 1000 |
| train error | 0.0 | 0.0 | 0.0 |
| test error | 8.4 | 3.3 | 3.1 |

- Occam's razor wrongly predicts "simpler" rule is better


## A Better Story: The Margins Explanation

[with Freund, Bartlett \& Lee]

- key idea:
- training error only measures whether classifications are right or wrong
- should also consider confidence of classifications


## A Better Story: The Margins Explanation

[with Freund, Bartlett \& Lee]

- key idea:
- training error only measures whether classifications are right or wrong
- should also consider confidence of classifications
- recall: $H_{\text {final }}$ is weighted majority vote of weak classifiers


## A Better Story: The Margins Explanation

[with Freund, Bartlett \& Lee]

- key idea:
- training error only measures whether classifications are right or wrong
- should also consider confidence of classifications
- recall: $H_{\text {final }}$ is weighted majority vote of weak classifiers
- measure confidence by margin = strength of the vote
$=($ fraction voting correctly $)-($ fraction voting incorrectly $)$



## Empirical Evidence: The Margin Distribution

- margin distribution
$=$ cumulative distribution of margins of training examples





## Theoretical Evidence: Analyzing Boosting Using Margins

- Theorem: large margins $\Rightarrow$ better bound on generalization error (independent of number of rounds)


## Theoretical Evidence: Analyzing Boosting Using Margins

- Theorem: large margins $\Rightarrow$ better bound on generalization error (independent of number of rounds)
- proof idea: if all margins are large, then can approximate final classifier by a much smaller classifier (just as polls can predict not-too-close election)


## Theoretical Evidence: Analyzing Boosting Using Margins

- Theorem: large margins $\Rightarrow$ better bound on generalization error (independent of number of rounds)
- proof idea: if all margins are large, then can approximate final classifier by a much smaller classifier (just as polls can predict not-too-close election)
- Theorem: boosting tends to increase margins of training examples (given weak learning assumption)


## Theoretical Evidence: Analyzing Boosting Using Margins

- Theorem: large margins $\Rightarrow$ better bound on generalization error (independent of number of rounds)
- proof idea: if all margins are large, then can approximate final classifier by a much smaller classifier (just as polls can predict not-too-close election)
- Theorem: boosting tends to increase margins of training examples (given weak learning assumption)
- proof idea: similar to training error proof


## Theoretical Evidence: Analyzing Boosting Using Margins

- Theorem: large margins $\Rightarrow$ better bound on generalization error (independent of number of rounds)
- proof idea: if all margins are large, then can approximate final classifier by a much smaller classifier (just as polls can predict not-too-close election)
- Theorem: boosting tends to increase margins of training examples (given weak learning assumption)
- proof idea: similar to training error proof
- SO:
although final classifier is getting larger, margins are likely to be increasing, so final classifier actually getting close to a simpler classifier, driving down the test error


## More Technically...

- with high probability, $\forall \theta>0$ :

$$
\text { generalization error } \leq \hat{\operatorname{Pr}}[\operatorname{margin} \leq \theta]+\tilde{O}\left(\frac{\sqrt{d / m}}{\theta}\right)
$$

$$
\text { ( } \hat{\operatorname{Pr}}[]=\text { empirical probability) }
$$

- bound depends on
- $m=$ \# training examples
- $d=$ "complexity" of weak classifiers
- entire distribution of margins of training examples
- $\hat{\operatorname{Pr}}[\operatorname{margin} \leq \theta] \rightarrow 0$ exponentially fast (in $T$ ) if (error of $h_{t}$ on $\left.D_{t}\right)<1 / 2-\theta(\forall t)$
- so: if weak learning assumption holds, then all examples will quickly have "large" margins


# Other Ways of Understanding_AdaBoost 

- game theory
- loss minimization
- estimating conditional probabilities


## Game Theory

- game defined by matrix M :

|  | Rock | Paper | Scissors |
| ---: | :---: | :---: | :---: |
| Rock | $1 / 2$ | 1 | 0 |
| Paper | 0 | $1 / 2$ | 1 |
| Scissors | 1 | 0 | $1 / 2$ |

- row player chooses row $i$
- column player chooses column $j$ (simultaneously)
- row player's goal: minimize loss $\mathbf{M}(i, j)$


## Game Theory

- game defined by matrix $\mathbf{M}$ :

|  | Rock | Paper | Scissors |
| ---: | :---: | :---: | :---: |
| Rock | $1 / 2$ | 1 | 0 |
| Paper | 0 | $1 / 2$ | 1 |
| Scissors | 1 | 0 | $1 / 2$ |

- row player chooses row $i$
- column player chooses column $j$ (simultaneously)
- row player's goal: minimize loss $\mathbf{M}(i, j)$
- usually allow randomized play:
- players choose distributions $\mathbf{P}$ and $\mathbf{Q}$ over rows and columns
- learner's (expected) loss

$$
\begin{aligned}
& =\sum_{i, j} \mathbf{P}(i) \mathbf{M}(i, j) \mathbf{Q}(j) \\
& =\mathbf{P}^{\mathrm{T}} \mathbf{M} \mathbf{Q} \equiv \mathbf{M}(\mathbf{P}, \mathbf{Q})
\end{aligned}
$$

## The Minmax Theorem

- von Neumann's minmax theorem:

$$
\begin{aligned}
\min _{\mathbf{P}} \max _{\mathbf{Q}} \mathbf{M}(\mathbf{P}, \mathbf{Q}) & =\max _{\mathbf{Q}} \min _{\mathbf{P}} \mathbf{M}(\mathbf{P}, \mathbf{Q}) \\
& =V \\
& =\text { "value" of game } \mathbf{M}
\end{aligned}
$$

- in words:
- $v=$ min max means:
- row player has strategy $\mathbf{P}^{*}$ such that $\forall$ column strategy $\mathbf{Q}$ loss $\mathbf{M}\left(\mathbf{P}^{*}, \mathbf{Q}\right) \leq v$
- $v=$ max min means:
- this is optimal in sense that column player has strategy $\mathbf{Q}^{*}$ such that $\forall$ row strategy $\mathbf{P}$ loss $\mathbf{M}\left(\mathbf{P}, \mathbf{Q}^{*}\right) \geq v$


## The Boosting Game

- let $\left\{g_{1}, \ldots, g_{N}\right\}=$ space of all weak classifiers
- row player $\leftrightarrow$ booster
- column player $\leftrightarrow$ weak learner
- matrix M:
- row $\leftrightarrow$ example $\left(x_{i}, y_{i}\right)$
- column $\leftrightarrow$ weak classifier $g_{j}$
- $M(i, j)= \begin{cases}1 & \text { if } y_{i}=g_{j}\left(x_{i}\right) \\ 0 & \text { else }\end{cases}$
weak learner



## Boosting and the Minmax Theorem

- if:
- $\forall$ distributions over examples $\exists h$ with accuracy $\geq \frac{1}{2}+\gamma$
- then:
- $\min _{\mathbf{P}} \max _{j} \mathbf{M}(\mathbf{P}, j) \geq \frac{1}{2}+\gamma$
- by minmax theorem:
- $\max _{\mathbf{Q}} \min _{i} \mathbf{M}(i, \mathbf{Q}) \geq \frac{1}{2}+\gamma>\frac{1}{2}$
- which means:
- $\exists$ weighted majority of classifiers which correctly classifies all examples with positive margin $(2 \gamma)$
- optimal margin $\leftrightarrow$ "value" of game


## AdaBoost and Game Theory

## [with Freund]

- AdaBoost is special case of general algorithm for solving games through repeated play
- can show
- distribution over examples converges to (approximate) minmax strategy for boosting game
- weights on weak classifiers converge to (approximate) maxmin strategy
- different instantiation of game-playing algorithm gives on-line learning algorithms (such as weighted majority algorithm)


## AdaBoost and Exponential Loss

- many (most?) learning algorithms minimize a "loss" function
- e.g. least squares regression
- training error proof shows AdaBoost actually minimizes

$$
\prod_{t} Z_{t}=\frac{1}{m} \sum_{i} \exp \left(-y_{i} f\left(x_{i}\right)\right)
$$

where $f(x)=\sum_{t} \alpha_{t} h_{t}(x)$

- on each round, AdaBoost greedily chooses $\alpha_{t}$ and $h_{t}$ to minimize loss


## AdaBoost and Exponential Loss

- many (most?) learning algorithms minimize a "loss" function
- e.g. least squares regression
- training error proof shows AdaBoost actually minimizes

$$
\prod_{t} Z_{t}=\frac{1}{m} \sum_{i} \exp \left(-y_{i} f\left(x_{i}\right)\right)
$$

where $f(x)=\sum_{t} \alpha_{t} h_{t}(x)$

- on each round, AdaBoost greedily chooses $\alpha_{t}$ and $h_{t}$ to minimize loss
- exponential loss is an upper bound on 0-1 (classification) loss
- AdaBoost provably minimizes exponential loss



## Coordinate Descent

[Breiman]

- $\left\{g_{1}, \ldots, g_{N}\right\}=$ space of all weak classifiers
- want to find $\lambda_{1}, \ldots, \lambda_{N}$ to minimize

$$
L\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{i} \exp \left(-y_{i} \sum_{j} \lambda_{j} g_{j}\left(x_{i}\right)\right)
$$

## Coordinate Descent

[Breiman]

- $\left\{g_{1}, \ldots, g_{N}\right\}=$ space of all weak classifiers
- want to find $\lambda_{1}, \ldots, \lambda_{N}$ to minimize

$$
L\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{i} \exp \left(-y_{i} \sum_{j} \lambda_{j} g_{j}\left(x_{i}\right)\right)
$$

- AdaBoost is actually doing coordinate descent on this optimization problem:
- initially, all $\lambda_{j}=0$
- each round: choose one coordinate $\lambda_{j}$ (corresponding to $h_{t}$ ) and update (increment by $\alpha_{t}$ )
- choose update causing biggest decrease in loss
- powerful technique for minimizing over huge space of functions


## Functional Gradient Descent

## [Friedman][Mason et al.]

- want to minimize

$$
L(f)=L\left(f\left(x_{1}\right), \ldots, f\left(x_{m}\right)\right)=\sum_{i} \exp \left(-y_{i} f\left(x_{i}\right)\right)
$$

## Functional Gradient Descent

> [Friedman][Mason et al.]

- want to minimize

$$
L(f)=L\left(f\left(x_{1}\right), \ldots, f\left(x_{m}\right)\right)=\sum_{i} \exp \left(-y_{i} f\left(x_{i}\right)\right)
$$

- say have current estimate $f$ and want to improve
- to do gradient descent, would like update

$$
f \leftarrow f-\alpha \nabla_{f} L(f)
$$

## Functional Gradient Descent

## [Friedman][Mason et al.]

- want to minimize

$$
L(f)=L\left(f\left(x_{1}\right), \ldots, f\left(x_{m}\right)\right)=\sum_{i} \exp \left(-y_{i} f\left(x_{i}\right)\right)
$$

- say have current estimate $f$ and want to improve
- to do gradient descent, would like update

$$
f \leftarrow f-\alpha \nabla_{f} L(f)
$$

- but update restricted in class of weak classifiers

$$
f \leftarrow f+\alpha h_{t}
$$

## Functional Gradient Descent

## [Friedman][Mason et al.]

- want to minimize

$$
L(f)=L\left(f\left(x_{1}\right), \ldots, f\left(x_{m}\right)\right)=\sum_{i} \exp \left(-y_{i} f\left(x_{i}\right)\right)
$$

- say have current estimate $f$ and want to improve
- to do gradient descent, would like update

$$
f \leftarrow f-\alpha \nabla_{f} L(f)
$$

- but update restricted in class of weak classifiers

$$
f \leftarrow f+\alpha h_{t}
$$

- so choose $h_{t}$ "closest" to $-\nabla_{f} L(f)$
- equivalent to AdaBoost


## Benefits of Model Fitting View

- immediate generalization to other loss functions
- e.g. squared error for regression
- e.g. logistic regression (by only changing one line of AdaBoost)
- sensible approach for converting output of boosting into conditional probability estimates


## Benefits of Model Fitting View

- immediate generalization to other loss functions
- e.g. squared error for regression
- e.g. logistic regression (by only changing one line of AdaBoost)
- sensible approach for converting output of boosting into conditional probability estimates
- caveat: wrong to view AdaBoost as just an algorithm for minimizing exponential loss
- other algorithms for minimizing same loss will (provably) give very poor performance
- thus, this loss function cannot explain why AdaBoost "works"


## Estimating Conditional Probabilities

[Friedman, Hastie \& Tibshirani]

- often want to estimate probability that $y=+1$ given $x$
- AdaBoost minimizes (empirical version of):

$$
\mathrm{E}_{x, y}\left[e^{-y f(x)}\right]=\mathrm{E}_{x}\left[\mathrm{P}[y=+1 \mid x] e^{-f(x)}+\mathrm{P}[y=-1 \mid x] e^{f(x)}\right]
$$

where $x, y$ random from true distribution

## Estimating Conditional Probabilities

[Friedman, Hastie \& Tibshirani]

- often want to estimate probability that $y=+1$ given $x$
- AdaBoost minimizes (empirical version of):

$$
\mathrm{E}_{x, y}\left[e^{-y f(x)}\right]=\mathrm{E}_{x}\left[\mathrm{P}[y=+1 \mid x] e^{-f(x)}+\mathrm{P}[y=-1 \mid x] e^{f(x)}\right]
$$

where $x, y$ random from true distribution

- over all $f$, minimized when

$$
f(x)=\frac{1}{2} \cdot \ln \left(\frac{\mathrm{P}[y=+1 \mid x]}{\mathrm{P}[y=-1 \mid x]}\right)
$$

or

$$
\mathrm{P}[y=+1 \mid x]=\frac{1}{1+e^{-2 f(x)}}
$$

- so, to convert $f$ output by AdaBoost to probability estimate, use same formula


## Calibration Curve



- order examples by $f$ value output by AdaBoost
- break into bins of size $r$
- for each bin, plot a point:
- $x$-value: average estimated probability of examples in bin
- $y$-value: actual fraction of positive examples in bin


## Other Ways to Think about AdaBoost

- dynamical systems
- statistical consistency
- maximum entropy


## Experiments, Applications and Extensions

- basic experiments
- multiclass classification
- confidence-rated predictions
- text categorization / spoken-dialogue systems
- incorporating prior knowledge
- active learning
- face detection


## Practical Advantages of AdaBoost

- fast
- simple and easy to program
- no parameters to tune (except $T$ )
- flexible - can combine with any learning algorithm
- no prior knowledge needed about weak learner
- provably effective, provided can consistently find rough rules of thumb
$\rightarrow$ shift in mind set - goal now is merely to find classifiers barely better than random guessing
- versatile
- can use with data that is textual, numeric, discrete, etc.
- has been extended to learning problems well beyond binary classification


## Caveats

- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
- weak classifiers too complex
$\rightarrow$ overfitting
- weak classifiers too weak ( $\gamma_{t} \rightarrow 0$ too quickly)
$\rightarrow$ underfitting
$\rightarrow$ low margins $\rightarrow$ overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise


## UCI Experiments

## [with Freund]

- tested AdaBoost on UCI benchmarks
- used:
- C4.5 (Quinlan's decision tree algorithm)
- "decision stumps": very simple rules of thumb that test on single attributes



## UCI Results




## Multiclass Problems

[with Freund]

- say $y \in Y=\{1, \ldots, k\}$
- direct approach (AdaBoost.M1):

$$
\begin{gathered}
h_{t}: X \rightarrow Y \\
D_{t+1}(i)=\frac{D_{t}(i)}{Z_{t}} \cdot \begin{cases}e^{-\alpha_{t}} & \text { if } y_{i}=h_{t}\left(x_{i}\right) \\
e^{\alpha_{t}} & \text { if } y_{i} \neq h_{t}\left(x_{i}\right)\end{cases} \\
H_{\text {final }}(x)=\arg \max _{y \in Y} \sum_{t: h_{t}(x)=y} \alpha_{t}
\end{gathered}
$$

## Multiclass Problems

## [with Freund]

- say $y \in Y=\{1, \ldots, k\}$
- direct approach (AdaBoost.M1):

$$
\begin{gathered}
h_{t}: X \rightarrow Y \\
D_{t+1}(i)=\frac{D_{t}(i)}{Z_{t}} \cdot \begin{cases}e^{-\alpha_{t}} & \text { if } y_{i}=h_{t}\left(x_{i}\right) \\
e^{\alpha_{t}} & \text { if } y_{i} \neq h_{t}\left(x_{i}\right)\end{cases} \\
H_{\text {final }}(x)=\arg \max _{y \in Y} \sum_{t: h_{t}(x)=y} \alpha_{t}
\end{gathered}
$$

- can prove same bound on error if $\forall t: \epsilon_{t} \leq 1 / 2$
- in practice, not usually a problem for "strong" weak learners (e.g., C4.5)
- significant problem for "weak" weak learners (e.g., decision stumps)
- instead, reduce to binary


## Reducing Multiclass to Binary

[with Singer]

- say possible labels are $\{a, b, c, d, e\}$
- each training example replaced by five $\{-1,+1\}$-labeled examples:

$$
x \quad, \quad c \rightarrow\left\{\begin{array}{lll}
(x, \mathrm{a}) & , & -1 \\
(x, \mathrm{~b}) & , & -1 \\
(x, \mathrm{c}) & , & +1 \\
(x, \mathrm{~d}) & , & -1 \\
(x, \mathrm{e}) & , & -1
\end{array}\right.
$$

- predict with label receiving most (weighted) votes


## AdaBoost.MH

- can prove:

$$
\text { training } \operatorname{error}\left(H_{\text {final }}\right) \leq \frac{k}{2} \cdot \prod Z_{t}
$$

- reflects fact that small number of errors in binary predictors can cause overall prediction to be incorrect
- extends immediately to multi-label case (more than one correct label per example)


## Using Output Codes

[with Allwein \& Singer][Dietterich \& Bakiri]

- alternative: choose "code word" for each label

|  | $\pi_{1}$ | $\pi_{2}$ | $\pi_{3}$ | $\pi_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| a | - | + | - | + |
| b | - | + | + | - |
| c | + | - | - | + |
| d | + | - | + | + |
| e | - | + | - | - |

- each training example mapped to one example per column

$$
x \quad, \quad c \rightarrow\left\{\begin{array}{lll}
\left(x, \pi_{1}\right) & , & +1 \\
\left(x, \pi_{2}\right) & , & -1 \\
\left(x, \pi_{3}\right) & , & -1 \\
\left(x, \pi_{4}\right) & , & +1
\end{array}\right.
$$

- to classify new example $x$ :
- evaluate classifier on $\left(x, \pi_{1}\right), \ldots,\left(x, \pi_{4}\right)$
- choose label "most consistent" with results


## Output Codes (cont.)

- training error bounds independent of \# of classes
- overall prediction robust to large number of errors in binary predictors
- but: binary problems may be harder


## Ranking Problems

[with Freund, Iyer \& Singer]

- other problems can also be handled by reducing to binary
- e.g.: want to learn to rank objects (say, movies) from examples
- can reduce to multiple binary questions of form: "is or is not object A preferred to object B?"
- now apply (binary) AdaBoost


## "Hard" Predictions Can Slow Learning



- ideally, want weak classifier that says:

$$
h(x)= \begin{cases}+1 & \text { if } x \text { above } L \\ \text { "don't know" } & \text { else }\end{cases}
$$

## "Hard" Predictions Can Slow Learning



- ideally, want weak classifier that says:

$$
h(x)= \begin{cases}+1 & \text { if } x \text { above } L \\ \text { "don't know" } & \text { else }\end{cases}
$$

- problem: cannot express using "hard" predictions
- if must predict $\pm 1$ below $L$, will introduce many "bad" predictions
- need to "clean up" on later rounds
- dramatically increases time to convergence


## Confidence-rated Predictions

[with Singer]

- useful to allow weak classifiers to assign confidences to predictions
- formally, allow $h_{t}: X \rightarrow \mathbb{R}$

$$
\begin{aligned}
\operatorname{sign}\left(h_{t}(x)\right) & =\text { prediction } \\
\left|h_{t}(x)\right| & =\text { "confidence" }
\end{aligned}
$$

## Confidence-rated Predictions

[with Singer]

- useful to allow weak classifiers to assign confidences to predictions
- formally, allow $h_{t}: X \rightarrow \mathbb{R}$

$$
\begin{aligned}
\operatorname{sign}\left(h_{t}(x)\right) & =\text { prediction } \\
\left|h_{t}(x)\right| & =\text { "confidence" }
\end{aligned}
$$

- use identical update:

$$
D_{t+1}(i)=\frac{D_{t}(i)}{Z_{t}} \cdot \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)
$$

and identical rule for combining weak classifiers

- question: how to choose $\alpha_{t}$ and $h_{t}$ on each round


## Confidence-rated Predictions (cont.)

- saw earlier:

$$
\text { training error }\left(H_{\text {final }}\right) \leq \prod_{t} Z_{t}=\frac{1}{m} \sum_{i} \exp \left(-y_{i} \sum_{t} \alpha_{t} h_{t}\left(x_{i}\right)\right)
$$

- therefore, on each round $t$, should choose $\alpha_{t} h_{t}$ to minimize:

$$
Z_{t}=\sum_{i} D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)
$$

- in many cases (e.g., decision stumps), best confidence-rated weak classifier has simple form that can be found efficiently


## Confidence-rated Predictions Help a Lot



|  | round first reached <br> \% error |  | conf. |
| :---: | ---: | ---: | ---: |
| no conf. | speedup |  |  |
| 40 | 268 | 16,938 | 63.2 |
| 35 | 598 | 65,292 | 109.2 |
| 30 | 1,888 | $>80,000$ | - |

## Application: Boosting for Text Categorization

- weak classifiers: very simple weak classifiers that test on simple patterns, namely, (sparse) $n$-grams
- find parameter $\alpha_{t}$ and rule $h_{t}$ of given form which $\operatorname{minimize} Z_{t}$
- use efficiently implemented exhaustive search
- "How may I help you" data:
- 7844 training examples
- 1000 test examples
- categories: AreaCode, AttService, BillingCredit, CallingCard, Collect, Competitor, DialForMe, Directory, HowToDial, PersonToPerson, Rate, ThirdNumber, Time, TimeCharge, Other.


## Weak Classifiers



## More Weak Classifiers



## More Weak Classifiers

| rnd | term | AC AS BC CC CO CM DM DI HO PP RA 3N TI TC OT |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | third | T | T |  | T | - | T | - | I | I | ■ | T |  | T | T | - |
|  |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 15 | to | - | - | - | - | - | - | - | - | - | - | - | - | - | $=$ | - |
|  |  | - | - | - | - | - | - | - | - | - | 팡 | $=$ | T | - | = | - |
| 16 | for |  |  |  |  | - | - | - | $=$ | - | - | - | = | T | - | - |
|  |  | $=$ | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 17 | charges | T |  | $=$ | $=$ | 1 | = | $=$ | = | - | = | n | $=$ | I | $\underline{1}$ | - |
|  |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|  | dial | $=$ |  |  |  | $=$ | - |  | - | - | T | - | = | T | T | - |
|  |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|  | just | = | $=$ | - | - | = | - | $=$ | - | - | - | - | = | - | - | - |
|  |  | - | - | $=$ | - | - | - | - | - | - | - | - | - | - | - | - |

## Finding Outliers

examples with most weight are often outliers (mislabeled and/or ambiguous)

- I'm trying to make a credit card call (Collect)
- hello (Rate)
- yes I'd like to make a long distance collect call please (CallingCard)
- calling card please (Collect)
- yeah I'd like to use my calling card number (Collect)
- can I get a collect call (CallingCard)
- yes I would like to make a long distant telephone call and have the charges billed to another number (CallingCard DialForMe)
- yeah I can not stand it this morning I did oversea call is so bad (BillingCredit)
- yeah special offers going on for long distance (AttService Rate)
- mister allen please william allen (PersonToPerson)
- yes ma'am I I'm trying to make a long distance call to a non dialable point in san miguel philippines (AttService Other)


## Application: Human-computer Spoken Dialogue

 [with Rahim, Di Fabbrizio, Dutton, Gupta, Hollister \& Riccardi]- application: automatic "store front" or "help desk" for AT\&T Labs' Natural Voices business
- caller can request demo, pricing information, technical support, sales agent, etc.
- interactive dialogue


## How It Works



- NLU's job: classify caller utterances into 24 categories (demo, sales rep, pricing info, yes, no, etc.)
- weak classifiers: test for presence of word or phrase


## Need for Prior, Human Knowledge

[with Rochery, Rahim \& Gupta]

- building NLU: standard text categorization problem
- need lots of data, but for cheap, rapid deployment, can't wait for it
- bootstrapping problem:
- need labeled data to deploy
- need to deploy to get labeled data
- idea: use human knowledge to compensate for insufficient data
- modify loss function to balance fit to data against fit to prior model


## Results: AP-Titles



## Results: Helpdesk



## Problem: Labels are Expensive

- for spoken-dialogue task
- getting examples is cheap
- getting labels is expensive
- must be annotated by humans
- how to reduce number of labels needed?


## Active Learning

- idea:
- use selective sampling to choose which examples to label
- focus on least confident examples
[Lewis \& Gale]
- for boosting, use (absolute) margin $|f(x)|$ as natural confidence measure
[Abe \& Mamitsuka]


## Labeling Scheme

- start with pool of unlabeled examples
- choose (say) 500 examples at random for labeling
- run boosting on all labeled examples
- get combined classifier $f$
- pick (say) 250 additional examples from pool for labeling
- choose examples with minimum $|f(x)|$
- repeat


## Results: How-May-l-Help-You?



|  | first reached |  | \% label |
| :---: | ---: | ---: | ---: |
| \% error | random | active | savings |
| 28 | 11,000 | 5,500 | 50 |
| 26 | 22,000 | 9,500 | 57 |
| 25 | 40,000 | 13,000 | 68 |

## Results: Letter



|  | first reached |  | \% label |
| :---: | ---: | ---: | ---: |
| \% error | random | active | savings |
| 10 | 3,500 | 1,500 | 57 |
| 5 | 9,000 | 2,750 | 69 |
| 4 | 13,000 | 3,500 | 73 |

## Application: Detecting Faces

## [Viola \& Jones]

- problem: find faces in photograph or movie
- weak classifiers: detect light/dark rectangles in image

- many clever tricks to make extremely fast and accurate


## Conclusions

- boosting is a practical tool for classification and other learning problems
- grounded in rich theory
- performs well experimentally
- often (but not always!) resistant to overfitting
- many applications and extensions
- many ways to think about boosting
- none is entirely satisfactory by itself, but each useful in its own way
- considerable room for further theoretical and experimental work


## References

- Ron Meir and Gunnar Rätsch.

An Introduction to Boosting and Leveraging.
In Advanced Lectures on Machine Learning (LNAI2600), 2003.
http://www.boosting.org/papers/MeiRae03.pdf

- Robert E. Schapire.

The boosting approach to machine learning: An overview.
In MSRI Workshop on Nonlinear Estimation and Classification, 2002. http://www.cs.princeton.edu/~schapire/boost.html

